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Abstract——Potassium channels play important
roles in vital cellular signaling processes in both ex-
citable and nonexcitable cells. Over 50 human genes
encoding various K1 channels have been cloned dur-
ing the past decade, and precise biophysical proper-
ties, subunit stoichiometry, channel assembly, and
modulation by second messenger and ligands have
been elucidated to a large extent. Recent advances in
genetic linkage analysis have greatly facilitated the
identification of many disease-producing loci, and nat-
urally occurring mutations in various K1 channels
have been identified in diseases such as long-QT syn-
dromes, episodic ataxia/myokymia, familial convul-

sions, hearing and vestibular diseases, Bartter’s syn-
drome, and familial persistent hyperinsulinemic
hypoglycemia of infancy. In addition, changes in K1

channel function have been associated with cardiac
hypertrophy and failure, apoptosis and oncogenesis,
and various neurodegenerative and neuromuscular
disorders. This review aims to 1) provide an under-
standing of K1 channel function at the molecular level
in the context of disease processes and 2) discuss the
progress, hurdles, challenges, and opportunities in the
exploitation of K1 channels as therapeutic targets by
pharmacological and emerging genetic approaches.

I. Background

Potassium channels are a diverse and ubiquitous fam-
ily of membrane proteins present in both excitable and
nonexcitable cells. Members of this channel family play
critical roles in cellular signaling processes regulating
neurotransmitter release, heart rate, insulin secretion,
neuronal excitability, epithelial electrolyte transport,
smooth muscle contraction, and cell volume regulation.
Over 50 human genes encoding various K1 channels
have been cloned during the past decade (Fig. 1), and
precise biophysical properties, subunit stoichiometry,
channel assembly and modulation by second messenger
and ligands have been addressed to a large extent. More
recently, the crystal structure of a K1 channel from
Streptomyces lividans has become available (Doyle et al.,
1998).

Concurrent with this remarkable progress in our un-
derstanding of molecular diversity, structure, and func-

tion, a growing number of discoveries have linked K1

channel gene mutations with various diseases. Such dis-
eases of the heart, kidney, pancreas, and central nervous
system involve either mutation(s) in K1 channel gene(s)
and/or altered regulation of K1 channel function. The
enhanced understanding of these diseases, facilitated by
a combination of genomic and biophysical approaches,
has helped our understanding of how various mutations
affect channel function, contributes to disease etiology,
and rationalizes novel treatment strategies. In this re-
view, we provide a comprehensive overview of our recent
understanding of molecular defects of K1 channels in
various diseases and its implications for the develop-
ment of novel prophylactic or therapeutic approaches
targeting distinct types of K1 channels.

A brief overview of the structural and functional di-
versity of K1 channels is initially provided to enable

2 Abbreviations: Kv, voltage-gated K1 channel; Ab, b-amyloid;
b-APP, b-amyloid protein precursor; BFNC, benign familial neonatal
convulsion; BKCa, large conductance Ca21-activated K1 channel; EA,
episodic ataxia; EAG, ether-a-go-go K1 channel; 1-EBIO, 1-ethyl-2-
benzimidazolinone; hERG, human ether-a-go-go-related K1 channel;
IKCa, intermediate conductance Ca21-activated K1 channel; IKr,
cardiac rapid delayed rectifier; IKs, cardiac slow delayed rectifier;
IKur, ultrarapid delayed rectifier; ITO, transient outward delayed
rectifier; KATP, ATP-sensitive K1; KCsA, K1 channel from Strepto-
myces lividans; Kir, inward rectifier K1 channel; KCO, K1 channel
opener; LQT, long-QT syndrome; M-channel, muscarine-sensitive
K1 channel; MiRP, minK related peptide; PHHI, persistent hyper-
insulinemic hypoglycemia of infancy; P-loop, pore loop; PS, preseni-
lin; sAPP, secreted form of b-amyloid precursor protein; SKCa, small
conductance Ca21-activated K1 channel; SUR, sulfonylurea recep-
tor; TEA, tetraethylammonium; TM, transmembrane segment;
TREK, two-pore weak inward rectifier-related K1 channel.

FIG. 1. Growth of genes encoding diverse K1 channels. The Shaker K1

channel gene was first cloned from Drosophila (Papazian et al., 1987).
The gene products indicated along the y-axis include both K1 channel a-
and auxiliary subunits. The data were obtained from the Entrez database
of the National Center for Biotechnology Information (NCBI).
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familiarity with the nomenclature and biophysical and
pharmacological characteristics of diverse K1 channels.
Several extensive reviews are already available on this
subject that may be consulted for additional details
(Doupnik et al., 1995; Coetzee et al., 1999). Diseases
involving other voltage-gated ion channels have been
reviewed elsewhere (Ackerman and Clapham, 1997; Le-
hmann-Horn and Rüdel, 1997; Cooper and Jan, 1999).

A. Channel Diversity and Classification

K1 channels are membrane-spanning proteins that
selectively conduct K1 ions across the cell membrane
along its electrochemical gradient at a rate of 106 to 108

ions/s. To accomplish this, K1 channels are endowed
with a set of salient features: 1) a water-filled perme-
ation pathway (pore) that allows K1 ions to flow across
the cell membrane; 2) a selectivity filter that specifies
K1 as permeant ion species; and 3) a gating mechanism
that serves to switch between open and closed channel
conformations (Hille, 1992). Since the first gene encod-
ing a K1 channel was cloned from Drosophila Shaker
mutant (Papazian et al., 1987), more than 200 genes
encoding a variety of K1 channels have been identified
(Fig. 1), all containing a homologous pore segment
(S5-S6 linker) selective for K1 ions (Hartmann et al.,
1991; Yellen et al., 1991). Accordingly, a general classi-
fication of K1 channels into families is based upon the
primary amino acid sequence of the pore-containing sub-
unit. Three groups with six, four, or two putative trans-
membrane segments are recognized. These include 1)
voltage-gated K1 channels (Shaker-like) containing six
transmembrane regions (S1-S6) with a single pore; 2)
inward rectifier K1 channels containing only two trans-
membrane regions and a single pore; and 3) two-pore K1

channels containing four transmembranes with two
pore regions (Fig. 2). Table 1 lists a generalized classi-
fication of various cloned K1 channel subunits.

1. Six Transmembrane One-Pore Channels. Voltage-
gated K1 channels (Kv), whose members include Shak-
er-related channels, human ether-a-go-go-related K1

channels (hERG), Ca21-activated K1 channels, and
KCNQ channels, are activated by depolarization.

a. Pore and Selectivity Filter. The tripeptide se-
quence motif G(Y/F)G located in the S5-S6 linker is
common to the pore or P-loop of these and other K1

channels and hence is considered as the K1-selectivity
signature motif (Heginbotham et al., 1994). The residues
immediately adjacent to either side of this motif are also
generally conserved within the K1 channel superfamily.
Four of the pore loop domains contribute to the forma-
tion of a functional K1-conducting pore (MacKinnon,
1991). Accordingly, the heteromultimeric complex of
voltage-gated K1 channels is thought to be composed of
four pore loop-containing a-subunits arranged in a tet-
rameric fashion (MacKinnon, 1995; Jan and Jan, 1997).
The external entry to the channel pore consisting of
portions of the P-loop and adjacent residues in both S5

and S6 segments constitutes binding sites for toxins and
K1 channel blockers (MacKinnon and Miller, 1988;
MacKinnon et al., 1990; Yellen et al., 1991; Goldstein et
al., 1993; Pascual et al., 1995). On the other hand, the
internal vestibule of pore composed of residues from S5
and S6 segments facing the intracellular side contrib-
utes to binding sites for compounds such as 4-aminopyr-
idine, tetraethylammonium, and quinidine (Choi et al.,
1993; Lopez et al., 1994; Shieh and Kirsch, 1994; Yeola
et al., 1996). The S4-S5 linker lies close to the perme-
ation pathway and forms part of the receptor for the
inactivation ball (Isacoff et al., 1991).

b. Voltage Sensor and Channel Activation. In volt-
age-dependent ion channels, membrane depolarization

FIG. 2. Schematic representation of the structural classification of K1

channel subunits. A, 6-TM subunits. The voltage-gated K1 channels are
composed of four subunits each containing six transmembrane segments
(S1-S6) and a conducting pore (P) between S5 and S6 with a voltage
sensor (positive charge of amino acid residues) located at S4. Some of the
voltage-gated K1 channels include an auxiliary b-subunit (Kvb), which is
a cytoplasmic protein with binding site located at the N terminus of the
a-subunit. The inset shows the general assembly of K1 channels. The
homotetrameric K1 channel consists of four identical subunits while
different a-subunits form heterotetrameric K1 channels. B, 2-TM sub-
units. The inward rectifier K1 channel belongs to a superfamily of chan-
nels with four subunits each containing two transmembrane segments
(M1 and M2) with a P-loop in between. C, 4-TM subunits. This represents
a class of the K1 channels that has four transmembranes with two
P-loops. IACh, muscarine-activated K1 current; IKDR, delayed rectifying
K1 current; IKTO, transient outward delayed rectifier; IKUR, ultrarapid
delayed rectifier; IKr, cardiac rapid delayed rectifier; IKs, cardiac slow
delayed rectifier; IK1, inward rectifier; TWIK, two-pore weak inward
rectifier; TASK, TWIK-related acid-sensitive K1 channel; TRAAK,
TWIK-related arachidonic acid-stimulated K1 channel.
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is required to cause conformational changes leading to
channel opening, which allows permeant ions to flow.
The movement of this voltage sensor sensing changes in
membrane potential has been monitored electrically as
the gating current (Armstrong and Bezanilla, 1974).
Mutational analysis and gating current measurements
have suggested that the transmembrane S4 segment
represents the major component of the voltage sensor
(Papazian et al., 1991; Perozo et al., 1994). The S4 seg-
ment that contains positively charged residues (lysine or
arginine) at approximately every third position result-
ing in a regularly spaced array of 5 to 7 positive charges
is conserved within the voltage-gated K1 channel fam-
ily. The rearrangement of S4 in response to membrane
depolarization has also been confirmed by the means of
fluorescence techniques (Mannuzzu et al., 1996; Cha
and Bezanilla, 1997). While the S4 segment comprises
the major part of the voltage sensor required for the K1

channel activation, the electrostatic interaction of neg-
ative charges in S2 and S3 with the S4 segment also
contributes to the gating mechanism (Papazian et al.,
1995; Seoh et al., 1996). The nature of the gate that
ultimately controls access of permeant ions to the pore is
not conclusively established. Studies involving muta-
tional analysis, gating current measurements, and the
substituted cysteine accessibility method point to sev-
eral residues in the S5 and S6 segments that might form
the activation gate regulating access of ions to the pore
(Liu et al., 1997; Shieh et al., 1997; Kanevsky and Al-
drich, 1999).

c. Inactivation. Many voltage-dependent K1 chan-
nels activate and inactivate rapidly when membrane
potential becomes more positive. Inactivation is a non-
conducting state during maintained depolarization.
Three types of inactivation, i.e., N-, P-, and C-type, have
been characterized and associated with distinct molecu-
lar domains of the channel. For example, the N-terminal
residues (amino acids 6–46) of the Shaker K1 channel
involved in N-type inactivation moves into the internal
vestibule (in S4-S5 linker) to occlude the pore when the
channel opens (Hoshi et al., 1990; Isacoff et al., 1991).
After removal of this N terminus region, inactivation
can be restored in the mutant K1 channel by the corre-
sponding synthetic peptide (Zagotta et al., 1990). In
contrast to the fast process of N-type inactivation, the C-
and P-type inactivation involves a slower rearrange-
ment of outer mouth and specific residues in the pore,
respectively (Hoshi et al., 1991; De Biasi et al., 1993;
Yellen et al., 1994; Liu et al., 1996).

d. Subunit Interaction and Assembly Domains. As
noted previously, K1 channels contain four a-subunits,
which surround a water-filled, K1-selective pore (Fig. 2).
Among diverse voltage-gated K1 channels, only closely
related subfamilies of a-subunits are capable of coas-
sembling to form heteromultimers. For example, in the
Kv1 subfamily, a highly conserved cytoplasmic sequence
immediately preceding the first transmembrane seg-

ment (amino acid residues 83 to 196) was identified as
important to subfamily-specific channel assembly (Li et
al., 1992). In Shaker channels, a conserved region (T1, or
tetramerization domain 1) in the first transmembrane
segment is involved in formation of tetramers (Shen et
al., 1993). However, in more distantly related voltage-
gated K1 channels, ether-a-go-go (EAG), hERG, and
KCNQ1 K1 channel subfamilies, channel assembly pri-
marily involves C-terminal domains (Ludwig et al.,
1997; Kupershmidt et al., 1998). As discussed in the
following sections, patients with Jervell and Lange-
Nielsen long-QT (LQT) syndrome are characterized by
the absence of KCNQ1 heteromultimers caused by mu-
tations in the C terminus that impair subunit assembly
(Schmitt et al., 2000).

2. Two Transmembrane One-Pore Channels. The
inward rectifier K1 channels (Kirs) belong to a distant
superfamily of channels with four subunits each con-
taining a two-transmembrane segment (M1 and M2)
and a pore loop in between (Ho et al., 1993; Kubo et al.,
1993). These channels conduct K1 currents more in the
inward direction than outward, and they are important
in setting the resting membrane potential. This inward
rectification is attributed to gating mechanisms by in-
ternal Mg21 and polyamines (spermine, spermidine,
etc.) that occlude access of K1 to the internal vestibule of
a conducting pore (Matsuda, 1991; Ficker et al., 1994; Lu
and MacKinnon, 1994; Wible et al., 1994). Like the volt-
age-gated K1 channels, these channels are organized as
tetramers (Yang et al., 1995), although a more complex
octameric arrangement has been described, as in the
case of the ATP-sensitive K1 channels involving four
inward rectifiers contributing to ion conducting pore and
four peripheral sulfonylurea receptors as regulatory
subunits (Clement et al., 1997; Inagaki et al., 1997;
Shyng and Nichols, 1997).

3. Four Transmembrane Two-Pore Channels. The
more recently discovered tandem-pore domain family
are weak inward rectifiers with four putative transmem-
brane domains and two pore domains (Ketchum et al.,
1995; Lesage et al., 1996a). They represent perhaps the
most abundant class of K1 channels (at least in C. el-
egans), with .50 distinct members (Wang et al., 1999).
The G(Y/F)G residues of K1-selective motif is preserved
in the first pore loop of the two-pore K1 channel, but it
is replaced by GFG or GLG in the second pore loop.
Although all the two-pore channels have a conserved
core region between transmembrane segments M1 and
M4, the amino- and carboxyl-terminal domains are quite
diverse. With two-pore domain subunits, two such sub-
units would presumably form a channel to retain the
tetrameric arrangement.

B. Auxiliary Subunits

Auxiliary subunits that associate with many of the pore-
forming subunits have also been described (reviewed in
Isom et al., 1994). For example, the Kv1 channels associate
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with cytoplasmic b-subunits to alter channel kinetics (re-
viewed in Xu and Li, 1998). More recently, chaperone pro-
teins, such as KChAP, regulating the function and expres-
sion of some of the Kv channels, such as Kv2.1, Kv1.3, and
Kv4.3, have been reported (Kuryshev et al., 2000b). Cer-
tain other Kv channels, such as Kv5, Kv6, Kv8, and Kv9,
do not form functional channels themselves but associate
with Kv2.1 channels to alter the biophysical properties
(Salinas et al., 1997; Kramer et al., 1998). Other examples
include distinct b-subunits that associate with the calci-
um-activated K1 channels (Tseng-Crank et al., 1996; Wall-
ner et al., 1999a; Behrens et al., 2000; Brenner et al., 2000;
Meera et al., 2000), sulfonylurea receptors for the inward
rectifiers Kir6.1 or Kir6.2 (Aguilar-Bryan et al., 1995; Ina-
gaki et al., 1995a), and minK and minK-related peptides
(MiRPs) for the cardiac delayed rectifier channels (Barha-
nin et al., 1996; Sanguinetti et al., 1996; Abbott et al.,
1999). These subunits play roles as diverse as modulation
of gating properties such as inactivation, cell surface ex-
pression, and/or trafficking of the ion channel complex, to
serving as binding sites for both endogenous and exoge-
nous ligands. Given the diversity of K1 channel subunits
and the potential to vary the constituents to form diverse
a-a or a-b heteromeric channel complexes to alter expres-
sion, cellular targeting, and biophysical and pharmacolog-
ical properties in native cell types, understanding the pre-
cise composition of channel complexes in vivo remains a
challenge.

C. Crystal Structure of K1 Channels

Initial studies of the structure and function of K1

channels by a combination of mutagenesis and biophys-
ical approaches have revealed domains that are respon-
sible for K1 selectivity, gating, channel assembly, sub-
unit interaction, and drug binding sites. However, the
three dimensional structural implications remained
largely speculative. Recent discovery of the crystal
structure of the KCsA channel established a blueprint of
K1 channel structure with 3.2 Å resolution (Doyle et al.,
1998). The KCsA channel is encoded by a bacterial gene
cloned from S. lividans on the basis of sequence homol-
ogy to K1-selective motif GYG in the P-loop (Schrempf et
al., 1995). The KCsA channel contains only two trans-
membrane domains with an intervening pore loop, al-
though at the amino acid sequence level, this channel is
more similar to the voltage-gated K1 channels. Func-
tionally, it lacks any hint of voltage gating because of the
lack of S4 region. X-ray analysis revealed that four iden-
tical subunits form a tetramer creating an inverted cone,
cradling the selectivity filter of the pore in its outer end.
The overall length of the conducting pore is 45 Å, and its
diameter is variable along its distance. The internal
vestibule of the pore begins as a tunnel of 18 Å in length
that widens into a cavity (;10 Å across) near the middle
of the membrane, with the narrow selectivity filter only
12 Å long. The remainder of the pore is wider and lined
with hydrophobic amino acids. The selectivity filter is

lined by the carbonyl oxygen atoms of the GYG signa-
ture sequence, which is held open by structural con-
straints to coordinate K1 ions (;3 Å) but not smaller
Na1 ions because the diameter is too wide to substitute
for the hydration energy of the Na1 ions (Doyle et al.,
1998). The crystal structure of KCsA channel provides
the first three-dimensional structure of the conduction
pore that fits consistently with current understanding of
the core functionality of K1 channels. However, struc-
tural information of the remaining transmembrane seg-
ments (S1-S4), particularly the voltage sensor and the
gate coupling to channel opening and closing, remains to
be elucidated. Nevertheless, the understanding of struc-
tural information can be applied to design selective com-
pounds targeting K1 channels. For example, a structure-
based design strategy allowed several charybdotoxin
analogs to be prepared with about 20-fold higher affinity to
block Ca21-activated K1 channels versus voltage-gated
Kv1.3 channels (Rauer et al., 2000). It is to be anticipated
that a detailed understanding of the structural aspects
would revolutionize and refine approaches targeting K1

channels for therapeutic purposes.

II. Pathophysiologic Regulation of K1 Channels:
Genetically Linked Diseases

Advances in genetic linkage analysis during the past
decade have greatly facilitated the identification of
many disease-producing loci. Both positional cloning
and candidate gene approaches have been used. Using
positional cloning techniques, it has become possible to
identify the location of genetic locus responsible for a
given hereditary syndrome without prior knowledge of
the biochemical or physiological abnormalities underly-
ing the disease. Alternatively, following identification of
genes encoding proteins that may be logically altered in
a particular disease, the candidate gene approach may
be used to examine genetic linkage to the hereditary
disease of interest and screened for mutations.

As K1 channels play fundamental roles in the regula-
tion of membrane excitability, it is to be expected that
both genetic and acquired diseases involving altered
functioning of neurons, smooth muscle, and cardiac cells
could arise subsequent to abnormalities in K1 channel
proteins. Genetically linked diseases of the cardiac, neu-
ronal, renal, and metabolic systems involving members
of voltage-gated K1 channels, inward rectifiers, and
channel-associated proteins are discussed in the follow-
ing sections (Table 1).

A. Cardiac Diseases

K1 channels are critical to cardiac excitability because
they play a fundamental role in repolarization of the
action potential. Unlike the action potentials of nerves
that last only a few milliseconds, the action potentials of
ventricular myocytes can last several hundred millisec-
onds. This prolonged depolarization phase is essential
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for normal excitation-contraction coupling process and
renders the myocytes relatively refractory to premature
excitation. Various classes of K1 channels with different
time and voltage dependencies and pharmacological
properties function in concert to regulate the heart rate
by setting the resting membrane potential, amplitude,
and duration of action potential and its refractoriness
(Barry and Nerbonne, 1996; Roden and Kupershmidt,
1999; Snyders, 1999). The Kir2.1 current sets the resting
membrane potential and contributes to the terminal
phase of repolarization. The transient outward K1 cur-
rent (Kv4.3 or Kv1.4), which is Ca21-independent and
expressed in a species- and cell type-specific fashion, is
important for the early phase of repolarization. The long
ventricular action potentials that result from the slow
onset of repolarization are controlled mainly by two
types of delayed rectifier K1 currents, i.e., IKs (derived
from KCNQ1/minK) and IKr (derived from hERG/
MiRP1). Both genetic linkage analysis and the candi-
date gene approach revealed that mutations in these
delayed rectifier K1 channel subunits form the molecu-
lar basis of LQT syndromes (Curran et al., 1995; San-
guinetti et al., 1995; Schott et al., 1995; Wang et al.,
1996; Neyroud et al., 1997; Splawski et al., 1997b; Ab-
bott et al., 1999).

The LQT syndromes are inherited genetic disorders
characterized by prolonged or delayed ventricular repo-
larization, manifested on the electrocardiogram (ECG)
as a prolongation of the QT interval. Table 2 lists K1 and
other ion channel genes involved in various forms of
inherited LQT syndromes, LQT1 through LQT6. The
inherited LQT causes syncopal attacks and high risk of
sudden death as result of torsade de pointes polymorphic
ventricular tachycardia, typically triggered by adrener-
gic arousal (Ackerman and Clapham, 1997; Sanguinetti
and Spector, 1997; Vincent et al., 1999). Based on ge-
netic origins, two allelic diseases are recognized: 1) the
Romano-Ward syndrome inherited as a dominant trait
and 2) the autosomal recessive Jervell and Lange-
Nielsen syndrome. In the case of the latter, the patient
suffers from a severe congenital bilateral deafness in
addition to the cardiac disorder (Vincent et al., 1999).
Note that in addition to genetically linked LQT syn-
dromes, many drugs are also known to cause QT prolon-
gation leading to torsade de pointes (see Section III.).

1. Long-QT1 and Long-QT5 Syndromes: KCNQ1 (Kv-
LQT1) and minK. KvLQT1, encoded by the KCNQ1
gene, in association with the minK subunit, a short
peptide of 130 residues, constitutes the IKs responsible
for phase 3 repolarization in the heart (Barhanin et al.,
1996; Sanguinetti et al., 1996b). Several mutations in
the KCNQ1 gene, including missense mutations, intra-
genic deletion, and insertions, are involved in chromo-
some 11-linked LQT1 syndrome, the most common form
of inherited LQT in families with Jervell and Lange-
Nielsen and Romano-Ward syndromes (Russell et al.,
1996; Wang et al., 1996; Donger et al., 1997; Tanaka et
al., 1997; van den Berg et al., 1997; Saarinen et al., 1998;
Li et al., 1998; Neyroud et al., 1999;). Functional anal-
ysis of mutant channels in COS cells cotransfected with
the minK subunit revealed that these mutations either
alter gating properties or fail to produce functional ho-
momeric channels and reduced K1 current when coex-
pressed with the wild-type subunit (Chouabe et al.,
1997; Shalaby et al., 1997; Wollnik et al., 1997; Franqu-
eza et al., 1999).

Two separate mutations (D76N and S74L) in the
minK subunit were identified in patients phenotypically
characterized with LQT5 syndrome by single strand con-
formation polymorphism analyses (Splawski et al.,
1997b; Duggal et al., 1998). Again, functionally, these
mutations yield diminished IKs current when coinjected
with KCNQ1 either by suppressing channel function in a
dominant-negative fashion, increasing rate of channel
deactivation, or by shifting the voltage dependence of
channel activation in a positive direction. It is likely that
the mutations in KCNQ1 associated with LQT1 will
decrease the availability of IKs by altering gating prop-
erties or by a dominant-negative loss of channel function
leading to a prolonged ventricular repolarization. Ac-
cordingly, activators that restore the function of IKs
may prove useful in the treatment of LQT1 and LQT5
syndromes. Recently, Abitbol et al. (1999) have shown
that stilbenes and fenamates, by binding the extracellu-
lar domain flanking the minK transmembrane segment,
restored inactive IKs mutant channels, including the
naturally occurring LQT5 mutant, D76N.

Neyroud et al. (1997) have also identified a homozy-
gous deletion-insertion event in the C-terminal domain
of KCNQ1 in three affected children from two families
with congenital bilateral deafness associated with QT
prolongation. By in situ hybridization studies in mice, it
was shown that the KCNQ1 gene was expressed by the
marginal cells of the stria vascularis. It has been sug-
gested that, in conjunction with the minK subunit,
KCNQ1 forms a functional channel in marginal cells
that is responsible for secretion of endolymph, in the
inner ear, which bathes the stereocilia of sensory hair
cells. Thus, KCNQ1 plays a key role not only in the
ventricular repolarization but also in normal hearing,
probably via control of endolymph homeostasis (see Sec-
tion II.C.).

TABLE 2
K1 channel genes involved in long-QT syndromes

Type Gene Current/Channel Type

LQT1 KCNQ1 (KvLQT1) Component of slowly inactivating
delayed rectifier IKs

LQT2 hERG Delayed rectifier IKr rapidly
inactivating cardiac Na1

channel
LQT3 SCN5A
LQT4 Chromosome 4q25-27 Subunit involved in regulation of

cardiac repolarization?
LQT5 KCNE1 (MinK) Component of IKs
LQT6 MiRP1 Component of IKr
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2. Long-QT2 Syndrome and Human ether-a-go-go-Re-
lated K1 Channel. The hERG gene encoding a rapidly
activating IKr is a major subunit responsible for repo-
larization during cardiac action potential (Sanguinetti
et al., 1995). Interaction with hERG channels has been
shown to be a primary mechanism involved in the ther-
apeutic actions of the class III antiarrhythmic agents
and the potential cardiotoxicity of second generation H1
receptor antagonists, such as terfenadine and astem-
izole, as well as certain antidepressants and neurolep-
tics (Vincent et al., 1999).

By linkage analysis and single strand conformation
polymorphism, Curran et al. (1995) first demonstrated
that missense mutations, intragenic deletions, and
splice donor mutations in the hERG gene resulted in
chromosome 7-linked LQT2 syndrome. This finding was
further confirmed by studying several mutations in dif-
ferent regions of the hERG subunit in families associ-
ated with LQT syndromes (Benson et al., 1996; Dausse
et al., 1996; Satler et al., 1996, 1998; Tanaka et al.,
1997). Similar to KCNQ1, mutations of hERG decrease
repolarizing current and thus lengthen the duration of
cardiac action potential. The mutant hERG cRNA, when
expressed alone or in combination with wild-type chan-
nel, yields nonfunctional channels or evokes dominant
negative suppression of hERG function (Sanguinetti et
al., 1996a; Li et al., 1997; Babij et al., 1998; Nakajima et
al., 1998). By green fluorescent protein tagging and
Western blot analyses, it was found that the hERG-
G601S mutant was deficient in the trafficking of func-
tional protein to the plasma membrane (Furutani et al.,
1999), which could explain the reduction in functional
channels available for repolarization of the cardiac ac-
tion potential. Other LQT-associated mutations identi-
fied in the amino-terminal region of hERG form func-
tional channels, but with altered gating properties such
as accelerated channel deactivation, and positively
shifted voltage dependence of channel open probability.
Collectively, these alterations lead to reduced outward
current during the repolarization phase of the cardiac
action potential and prolonged QT interval (Chen et al.,
1999a). The diversity of mutations in the hERG gene
impairing channel function in varying proportions likely
contributes to variable degrees of clinical severity in
LQT2 patients.

Although channels formed of hERG subunits appear
similar to IKr, and although mutations in hERG gene
are associated with LQT2 syndrome, the recombinant
channels differ in gating, single channel conductance,
and sensitivity to antiarrhythmic drugs compared with
native currents. Another small membrane subunit,
MiRP1, cloned by searching the expressed sequence tag
(EST) database, was found to assemble with hERG to
alter its function (Abbott et al., 1999). Injection of
MiRP1 cRNA alone into oocytes revealed no currents by
itself, whereas MiRP1 had significant effects on the
properties of channels formed with hERG subunits but

not with other K1 channels, including KCNQ1, Shaker,
and Kv members. Coexpression of MiRP1 with hERG
revealed functional current with gating and sensitivity
to E-4031 similar to native cardiac IKr. Three missense
mutations associated with the LQT6 syndrome and ven-
tricular fibrillation have been identified in the MiRP1
gene. The mutant channels open slowly and close rap-
idly, thereby evoking diminished K1 currents. One vari-
ant, associated with clarithromycin-induced arrhyth-
mia, increases sensitivity to channel blockade by the
antibiotic. The latter finding reveals an important mech-
anism for acquired arrhythmia wherein a genetically
based reduction in K1 currents remains silent until
combined with additional factors.

b-Adrenoceptor antagonists have been used in the
treatment of LQT1 and LQT2 syndromes since episodes
of syncope and sudden death occur more frequently with
exercise and at times of adrenergic surges (Vincent et
al., 1999). The mechanism of dysfunction of hERG and
MiRP1 associated with LQT suggests that activators for
these channels may be therapeutically useful. Expres-
sion of hERG alone reveals little outward K1 current
upon depolarization, whereas large inward K1 currents
are seen when the membrane voltage is hyperpolarized
due to removal of C-type inactivation (Smith et al., 1996;
Spector et al., 1996). Elevation of external K1 levels
reduces this C-type inactivation, thereby increasing out-
ward K1 currents and reducing the prolongation of car-
diac action potential with LQT2. Indeed, Compton et al.
(1996) have shown that elevation of serum [K1] using
K1 supplements and spironolactone in patients with
LQT2 demonstrated a significant reduction of the QT
interval. Although it is difficult to maintain an elevated
level of serum K1, these findings suggest that the pa-
tients could avoid administration of drugs that cause
hypokalemia.

B. Neuronal Diseases

K1 channels are critical to neurotransmission in the
nervous system. Alterations in the function of these
channels lead to remarkable perturbations in membrane
excitability and neuronal function. Significant progress
has been made in linking many neuronal disorders, in-
cluding episodic ataxia and benign familial neonatal
convulsions, to K1 channel mutations.

1. Episodic Ataxia/Myokymia and Kv1.1. Episodic
ataxia (EA) is an autosomal dominant disorder in which
the affected individuals have brief episodes of ataxia
triggered by physical or emotional stress. On the basis of
the duration and severity of the attacks, two types of
episodic ataxia are recognized. In EA type 1 with onset
in early childhood, the ataxia occurs several times dur-
ing the day, lasts for seconds to minutes, and is associ-
ated with dysarthria and motor neuron activity, which
causes muscle rippling (myokymia) between and during
attacks. In contrast, in EA type 2, the attacks last for
hours to several days and are precipitated by emotional
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stress and exercise, but they do not startle. This type of
ataxia is associated with nystagmus and cerebellar at-
rophy, unlike the EA-1 type in which the affected chil-
dren do not develop persistent ataxia or cerebellar atro-
phy.

Linkage analysis has mapped episodic ataxia to two
different ion channel genes. EA-2 is associated with
missense mutations in CACNA1A, encoding a brain-
specific P/Q-type Ca21 channel located on chromosome
19p13, the same region associated with familial hemi-
plegic migraine, suggesting the possibility that both
EA-2 and familial hemiplegic migraine are allelic disor-
ders (Ophoff et al., 1996; Jen et al., 1999). By linkage
studies, Litt et al. (1994) localized the EA-1 gene to
chromosome 12p, where the KCNA1 gene encoding the
voltage-gated K1 channel in brain and peripheral ner-
vous systems has been mapped. Mutational analysis of
KCNA1 in several families with EA-1 has identified at
least ten missense mutations (Browne et al., 1994;
Scheffer et al., 1998). These mutations alter Kv1.1 func-
tion by reducing channel expression (dominant-negative
effect), altering gating properties by shifting the mid-
point of current activation some 10 to 40 mV in the
depolarization direction, or enhancing deactivation or
C-type inactivation rates (Adelman et al., 1995; Zerr et
al., 1998; Boland et al., 1999; Bretschneider et al., 1999).
Accordingly, it could be inferred that altered Kv1.1 func-
tion could impair the capacity of the affected neurons to
repolarize effectively following an action potential. Fur-
ther support for the notion that the diminished function
of KCNA1 leads to ataxia is obtained from gene knock-
out studies in which the homozygous mutant mice ex-
hibit attacks of tremors and marked ataxia after cold-
temperature stress (Smart et al., 1998).

Acetazolamide, a carbonic anhydrase inhibitor, has
been effective in reducing attack episodes in some pa-
tients suffering from EA-1. However, this compound did
not affect Kv1.1 wild-type or mutant channels
(Bretschneider et al., 1999). Pharmacological agents
that either shift the voltage dependence of Kv1.1 chan-
nel activation to more negative potentials or enhance the
magnitude of current could, in principle, prevent both
ataxia and myokymia (Sanguinetti and Spector, 1997).

2. Benign Familial Neonatal Convulsions and
KCNQ2/KCNQ3. Recent application of genetic anal-
ysis to hereditary epilepsy has provided the impetus for
the identification of mutations in genes encoding various
ion channels, including K1 channels (Biervert et al.,
1998; Charlier et al., 1998; Singh et al., 1998). BFNC is
an idiopathic form of epilepsy beginning within the first
six months after birth. Seizures are generalized and
mixed, starting with tonic posture, ocular symptoms,
and apnea, and often progress to clonic movements and
motor automatisms. Seizures last 1 to 2 s and occur
three to six times per day. Two forms of benign familial
neonatal convulsions, BFNC1 and BFNC2, are typically
observed in families as an autosomal dominant inheri-

tance and have been previously mapped into chromo-
somes 20q and 8q, respectively (Leppert and Singh,
1999). By positional cloning techniques, the voltage-
gated K1 channel KCNQ2, spanning the deletion region
of chromosome 20q13.3 that cosegregates with seizures
in a BFNC family, was identified (Biervert et al., 1998;
Singh et al., 1998). Missense mutation, frameshifts, and
splice-site mutations in KCNQ2 were also found in other
BFNC families. By a homology search of expressed se-
quence tag database and genotyping approaches, a mis-
sense mutation in the pore region of another voltage-
gated K1 channel, KCNQ3, was also identified from
families with BFNC2 previously linked to chromosome
8q24 (Biervert et al., 1998; Charlier et al., 1998; Schr-
oeder et al., 1998).

It is now understood that both KCNQ2 and KNCQ3
subunits coassemble to constitute properties of the M-
channel (M for muscarine) described in neurons (Brown
and Adams, 1980). First described in the peripheral
sympathetic neurons and subsequently in the CNS, this
channel is one of the most important regulators of neu-
ronal excitability because it plays a critical role in de-
termining the excitability threshold, firing properties,
and responsiveness of neurons to synaptic inputs. In the
absence of acetylcholine, the M-channel activity hyper-
polarizes the cell membrane potential, leading to a
dampening of neuronal responsiveness to synaptic in-
puts. However, in the presence of released acetylcholine,
the M-channels are inhibited. This change in M-channel
activity provides a mechanism for neurons to respond to
synaptic input and to favor firing a burst of spikes,
rather than a single spike, upon excitation (Hille, 1992).
By voltage-clamp recording of neurons from rat superior
cervical ganglion, Marrion et al. (1989) determined that
ACh-evoked suppression of the M-channel is mediated
by the activation of muscarinic M1 receptors. Seizures in
mice induced by a muscarinic agonist, pilocarpine, were
sensitive to inhibition by a muscarinic M1 antagonist,
pirezepine (Maslanski et al., 1994). Furthermore, in
transgenic mice lacking muscarinic M1 receptors, the
robust suppression of the M-current activity evoked by
muscarinic agonists in sympathetic ganglion neurons
was eliminated. Both homozygous and heterozygous
mutant mice were also resistant to seizures evoked by
systemic administration of pilocarpine (Hamilton et al.,
1997). Taken together, these studies suggest that M-
channels play a key role in controlling seizure activity.

Both KCNQ2 and KCNQ3 belong to the KCNQ family
of K1 channels that includes KCNQ1 (KvLQT1), whose
aberrant function leads to the congenital bilateral deaf-
ness associated with QT prolongation. The KCNQ2 pro-
tein exhibits 62% identity with KCNQ3 within the cod-
ing region and is also highly conserved with KCNQ1 in
transmembrane S1-S6 region with 60% identity and
70% similarity (Biervert et al., 1998; Charlier et al.,
1998; Tinel et al., 1998). Unlike KCNQ1, which is ex-
pressed strongly in human heart and pancreas, KCNQ2

K1 CHANNELS, DISEASES, AND THERAPEUTIC POTENTIAL 569

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


and KCNQ3 transcripts are detectable only in brain
(Biervert et al., 1998, Wang et al., 1998; Yang et al.,
1998) and in rat sympathetic ganglia (Wang et al., 1998).
Expression of human KCNQ2 was found to be high in
the hippocampus, caudate nucleus, and amygdala, mod-
erate in the thalamus, and weak in the subthalamic
nucleus, substantia nigra, and corpus callosum. A simi-
lar expression pattern for KCNQ3 was found in the
human brain (Biervert et al., 1998; Tinel et al., 1998;
Yang et al., 1998).

In human brain, four splice variants of KCNQ2 were
identified, among which only two forms generated K1-
selective currents when heterologously expressed in oo-
cytes or COS cells (Tinel et al., 1998). These currents
resemble those of KCNQ1 in their permeability se-
quence of cations, voltage dependence, and kinetics
(Biervert et al., 1998; Tinel et al., 1998). When expressed
in Xenopus oocytes, KCNQ3 elicited currents that were
only slightly above background but resembled the larger
depolarization-activated K1 currents observed with
KCNQ2 (Schroeder et al., 1998; Wang et al., 1998). Un-
like KCNQ1 (KvLQT1), where coinjection with minK
(KCNE1) dramatically alters the amplitude and gating
kinetics of the KCNQ1 channel and produces current
resembling cardiac IKs, neither KCNQ2 or KCNQ3 cur-
rents were altered when coinjected with the minK sub-
unit (Yang et al., 1998). However, when KCNQ2 and
KCNQ3 mRNAs were coinjected in the Xenopus oocytes,
the resultant current was more than 10-fold larger than
that observed in cells injected with either KCNQ2 or
KCNQ3 alone (Schroeder et al., 1998; Wang et al., 1998;
Yang et al., 1998). The expressed K1 current by coinjec-
tion with KCNQ2 and KCNQ3 has gating kinetics and
sensitivities to blockade by classical M-channel inhibi-
tors such as linopirdine and XE991, indicating that the
M-channel is a heteromultimer composed of KCNQ2 and
KCNQ3 subunits (Wang et al., 1998).

No detectable currents were expressed when cRNA of
the truncated KCNQ2 identified from families with
BFNC1 alone were injected. When mutant and wild-type
cRNA were coinjected at a 1:1 ratio to mimic the situa-
tion in a heterozygous patient, the currents were re-
duced, compared with those recorded from oocytes in-
jected with similar amounts of wild-type cRNA. Thus,
although there was no obvious dominant negative effect,
haploinsufficiency may be enough to explain the domi-
nant mode of inheritance of this disorder, which gener-
ally occurs transiently during infancy (Biervert et al.,
1998). Two single mutations in KCNQ2 (Y284C and
A306T), as well as insertion mutant associated with
BFNC1, were analyzed for current amplitude when co-
expressed with KCNQ3. The function of these mutant
heteromeric channels was significantly reduced, and no
dominant negative effect was observed. Likewise, when
the KCNQ3 mutant G310V was coexpressed with wild-
type KCNQ2, a loss function effect rather than a domi-
nant-negative effect was seen (Schroeder et al., 1998).

Together, Schroeder et al. (1998) suggested that a 25%
loss of heteromeric KCNQ2/KCNQ3 function is suffi-
cient to cause the hyperexcitability in BFNC. Recently,
another missense mutation that replaced tryptophan
with arginine (W309R) in the P-loop of KCNQ3 was also
reported from patients with BFNC (Hirose et al., 2000).

The cytoplasmic N terminus of KCNQ2 contains a
consensus site for cAMP-dependent phosphorylation,
and increases in intracellular cAMP concentration have
been shown to enhance KCNQ2/KCNQ3 current by 50%
(Schroeder et al., 1998). Compounds that open or en-
hance the activity of the M-currents, such as retigabine,
or elevate associated intracellular cAMP levels may
serve as useful antiepileptic agents. It should be pointed
out that in addition to M-channel mutations linking to
BFNC disorders, mutations in other ion channels have
been associated with varying forms of epilepsy (Stein-
lein, 1999). These include mutations of the neuronal
nicotinic acetylcholine receptor a4-subunit (CHRNA4),
identified to be responsible for the autosomal dominant
nocturnal frontal lobe epilepsy (Steinlein et al., 1995,
1997), and those involving voltage-gated sodium chan-
nel a1-subunit (SCN1B) identified in families associated
with generalized epilepsy with febrile seizures (Wallace
et al., 1998). Collectively, the discoveries of these ion
channels as epilepsy disease genes emphasize the poten-
tial roles of ion channels in epilepsy and suggest that
compounds that directly or indirectly modulate these
channels may prove helpful in suppressing seizures.

3. Neurodegeneration and Kir3.2. The progressive
loss of dopaminergic neurons in the weaver mouse is
similar to the pathological symptom of Parkinson’s dis-
ease where cell death of dopaminergic neurons in the
substantia nigra is observed, leading to striatal dopami-
nergic deficit and a clinical syndrome dominated by dis-
orders of movement (Yamada et al., 1990; Gaspar et al.,
1994). The weaver phenotype in mice is an autosomal
recessive neurological and reproductive disorder charac-
terized behaviorally by severe ataxia, hyperactivity, and
tremors that are manifested within 2 weeks after birth.
These behavioral changes are attributable to the degen-
eration of cerebellar granule cells and dopaminergic
neurons in the substantia nigra (Rakic and Sidman,
1973a,b). In addition, wv/wv genotype causes death or
impaired function of dopaminergic neurons in the sub-
stantia nigra, male infertility, and sporadic tonic-clonic
seizures (Hess, 1996; Harrison and Roffler-Tarlov,
1998). While heterozygous mice are not ataxic, they have
seizures and a significant reduction in the number of
granule cells.

The weaver mutation was mapped to mouse chromo-
some 16 in a region of conserved linkage with human
chromosome 21 (Reeves et al., 1989). By a combination
of physical and transcript mapping of the homologous
segment on human chromosome 21, Patil et al. (1995)
identified two potential candidate genes in this region:
1) mmb, encoding a serine/threonine-specific protein
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kinase, and 2) Kir3.2, encoding a G protein-gated in-
wardly rectifying K1 channel. Sequence analysis yielded
no mutations in mmb, whereas a single missense muta-
tion replacing a glycine with serine at residue 156
(G156S) was observed in Kir3.2 associated with weaver
mouse in a location within the pore-forming region, crit-
ical for ion selectivity and conserved within the K1 chan-
nel family (MacKinnon, 1995). The mutation renders the
channel nonselective, leading to conduction of Na1 ions
instead of the highly selective K1 ions (Navarro et al.,
1996; Slesinger et al., 1996). Ribonuclease protection
and reverse transcriptase-polymerase chain reaction
studies have shown that the overall expression pattern
of Kir3.2 gene parallels the developmental loss of the
cells in cerebellum, substantia nigra, and testes (Patil et
al., 1995; Slesinger et al., 1996).

It has been shown that Kir3.2 coassembles with
Kir3.1 to form the G protein-gated, K1-selective inward
rectifier channels in neurons (Duprat et al., 1995; Liao
et al., 1996; Velimirovic et al., 1996). Immunohistochem-
ical localization studies indicate that Kir3.2 and Kir3.1
proteins are expressed in the cerebellar neurons of mice
at postnatal day 4, at a time when neurons normally
undergo differentiation (Slesinger et al., 1996). Func-
tional analysis of expression of wvKir3.2 and Kir3.2 in
Xenopus oocytes or Chinese hamster ovary cells revealed
that the mutant channel showed reduced sensitivity to
muscarinic M2 receptor activation, failed to respond to
Ga subunit, and evoked diminished K1 currents. Fur-
thermore, the loss in selectivity for K1 and increased
basal current resulting from increased Na1 permeabil-
ity leads to alterations in membrane excitability, cell
differentiation, and ultimately cell death (Kofuji et al.,
1996; Navarro et al., 1996; Silverman et al., 1996;
Slesinger et al., 1996; Rossi et al., 1998). Results from
transgenic studies confirmed that the weaver pheno-
types arise from a gain-of-function mutation of Kir3.2.
Although the transgenic mice lacking Kir3.2 (2/2) are
morphologically indistinguishable from the wild type,
they have much reduced Kir3.1 expression in the brain,
develop spontaneous seizures, and are more susceptible
to pharmacologically induced seizures induced by pen-
tylenetetrazol (Signorini et al., 1997).

The nonselective cation current in cells expressing
wvKir3.2 can be blocked by MK-801 and calcium chan-
nel blockers (Kofuji et al., 1996). These compounds have
been shown to enhance cell viability and neurite out-
growth of cultured weaver granule cells, but not of wild-
type granule cells. In addition, neurite outgrowth and
migration of the weaver granule neurons has also been
shown to be enhanced by Fab2 fragments of antibodies
raised against a neurite outgrowth domain of the lami-
nin B2 chain (Liesi and Wright, 1996).

As mentioned previously, the degeneration of noncal-
bindin-positive dopaminergic neurons in substantia
nigra of weaver mice shares similarity to Parkinson’s
disease, in which the dopaminergic neurons that are

progressively lost in the substantia nigra are also non-
calbindin-positive. These observations suggest the pos-
sibility of a shared genetic defect in weaver mouse and
Parkinson’s disease (Yamada et al., 1990; Gaspar et al.,
1994). However, Bandmann et al. (1996) did not detect
mutations by sequencing analysis of the pore-forming
region of Kir3.2 gene from patients with familial and
sporadic cases of Parkinson’s disease, suggesting a dif-
fering etiology of nigral cell loss in Parkinson’s disease
and weaver mice. Nevertheless, the finding that weaver
phenotype results from a single amino acid mutation in
Kir3.2 leading to alterations in membrane excitability
provides a reasonable avenue for understanding the mo-
lecular nature of this neuronal disorder.

4. Schizophrenia and SK3 (hKCa3). Although ini-
tially differentiated on the basis of biophysical and dif-
ferential toxin sensitivity, distinct genes are now known
to encode various calcium-activated K1 channels (Ver-
gara et al., 1998; Castle, 1999; Wallner et al., 1999b).
Abnormal function of calcium-activated K1 channels
has been noted in platelets of patients with Alzheimer’s
disease, although its relevance to the pathology is not
clear (de Silva et al., 1998). The CAG triplet repeat in
KCNN3 gene encoding a small conductance calcium-
activated K1 channel, hKCa3, mapped to chromosome
1q21 has been reported to be associated with schizophre-
nia (Chandy et al., 1998), although subsequent investi-
gations to confirm these findings have been met with
mixed results (Austin et al., 1999; Dror et al., 1999).

C. Hearing and Vestibular Diseases: Nonsyndromic
Dominant Deafness and KCNQ4

Much progress has been made in the area of identify-
ing genes defective in hearing and balance disorders,
with over 40 such genes described (Holt and Corey,
1999). One of the genes reported to be the locus for
hereditary hearing impairment is another K1 channel
belonging to the KCNQ channel superfamily, i.e.,
KCNQ4. The KCNQ4 gene, isolated from a human ret-
ina library using KCNQ3 partial cDNA as a probe, ex-
hibits 38, 44, and 37% identity to KCNQ1, KCNQ2, and
KCNQ3, respectively (Kubisch et al., 1999). Reverse
transcriptase-polymerase chain reaction analysis re-
vealed high expression of KCNQ4 in the vestibular sys-
tem and brain. In cochlea sections from mice at postna-
tal day P12, sensory outer hair cells were strongly
labeled with a KCNQ4 antisense probe but not in the
inner hair cells and stria vascularis where KCNQ1 ex-
pression was detected. Expression of KCNQ4 in Xenopus
oocytes generated a voltage-dependent K1 current, sim-
ilar to KCNQ1, KCNQ2, and KCNQ3, except with slower
activation. Unlike KCNQ1, KCNQ4 did not interact with
minK. However, coexpression of KCNQ3 with KCNQ4
yielded currents resembling an M-channel, but with
only weak inhibition (75% inhibition at 200 mM) by
linopirdine, unlike those observed with the KCNQ2/
KCNQ3 combination. The similarity of currents from
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KCNQ3/KCNQ4 to M-channel indicated that KCNQ3/
KCNQ4 might potentially form another M-channel vari-
ant in the nervous system (Kubisch et al., 1999).

Using fluorescence in situ hybridization to human
chromosomes, KCNQ4 was mapped to chromosome
1p34, a region also hosting DFNA2, a locus for autoso-
mal dominant progressive hearing loss (Kubisch et al.,
1999). One 13-bp deletion mutation and four missense
mutations (G285S, G285C, W276S, and G321S) were
identified from families with autosomal dominant pro-
gressive hearing loss linked to the DFNA2 locus (Coucke
et al., 1999; Kubisch et al., 1999). The G285S and G285C
mutations alter the first glycine residue in the GYG
signature sequence of K1 channel pore. Mutations in
these amino acids disrupt the selectivity filter and, in
most cases, abolish channel function. An identical
change in amino acids at the equivalent position has also
been reported in the KCNQ1 gene of a patient with the
dominant LQT1 (Russell et al., 1996). Functional anal-
ysis reveals that the mutant channel did not produce
current when the cRNA was injected into oocytes,
whereas the mutation exerted a dominant-negative ef-
fect when coexpressed with wild-type KCNQ1. Whereas
mutations in KCNQ1 affect endolymph secretion, the
mechanism leading to KCNQ4-related hearing loss ap-
pears to be in outer hair cells (Kubisch et al., 1999),
inner ear, and the central auditory pathway (Khark-
ovets et al., 2000).

It must be pointed out that in addition to mutations in
KCNQ4, mutations in GJB3, which encodes the con-
nexin 31 component of gap junctions and was mapped to
human chromosome 1p33-p35, were identified from the
DFNA2 family with nonsyndromic autosomal dominant
hearing loss (Xia et al., 1998). Although at least two or
three genes responsible for hearing impairment are lo-
cated close together on chromosome 1p34, KCNQ4 mu-
tations may be a relatively frequent cause of autosomal
dominant hearing loss.

D. Renal Diseases: Bartter’s Syndrome and Kir1.1

Several transporters and ion channels in the renal
epithelium play important roles in urine production,
fluid balance, and electrolyte metabolism. Genetic anal-
ysis reveals that dysfunction of an inward rectifier K1

channel Kir1.1 is linked to Bartter’s syndrome, an auto-
somal recessive inherited renal tubular disorder charac-
terized by hypokalemia, metabolic alkalosis, hyper-re-
ninism and hyperaldosteronism. Patients have normal
or low blood pressure and renal salt loss despite in-
creased plasma renin activity and high serum aldoste-
rone levels (Karolyi et al., 1998; Simon and Lifton, 1998;
Scheinman et al., 1999). At least three phenotypically
different renal tubulopathies have been identified: ante-
natal Bartter’s syndrome (hyperprostaglandin E syn-
drome), classic Bartter’s syndrome, and Gitelman’s syn-
drome. Of these, polyhydramnios, premature delivery,
hypokalemic alkalosis, hypercalciuria, and dehydration

at birth characterize the antenatal Bartter’s syndrome
(hypokalemic alkalosis with hypercalciuria). Children
with the antenatal Bartter’s syndrome present the typ-
ical pattern of impaired salt reabsorption in the thick
ascending limb of Henle’s loop resulting in the marked
ante- and postnatal salt wasting.

Genetic heterogeneity of antenatal Bartter’s syn-
drome has been demonstrated initially by identification
of mutations in the SLC12A1 gene, encoding for the
bumetanide-sensitive sodium potassium 2 chloride co-
transporter (NKCC2) leading to defective reabsorption
of sodium chloride in the thick ascending limb of Henle’s
loop (Simon et al., 1996a; Vargas-Poussou et al., 1998).
Subsequently, several mutations in KCNJ1, encoding
the apical renal outer medullary inward rectifying K1

channel (Kir1.1), were identified in patients with ante-
natal Bartter’s syndrome by single strand conformation
polymorphism analysis (Simon et al., 1996b; Derst et al.,
1997; Feldmann et al., 1998; Vollmer et al., 1998). Func-
tional studies revealed that mutant channels expressed
none or significantly reduced currents compared with
the wild-type channel. This impaired K1 flux and loss of
tubular K1 channel function probably prevents apical
membrane potassium recycling with secondary inhibi-
tion of Na-K-2Cl cotransport in the thick ascending limb
of Henle’s loop (Derst et al., 1997). The mechanisms
underlying impaired Kir1.1 function involve abnormal-
ities in phosphorylation, proteolytic processing, and/or
protein trafficking (Schwalbe et al., 1998).

The signs and symptoms of Bartter’s syndrome are
usually a consequence of hypokalemia. Maintaining nor-
mal serum K1 levels and limiting the degree of meta-
bolic alkalosis are some of the treatment approaches,
and potassium supplements and potassium-sparing di-
uretics are frequently used (Gordon and Stokes, 1994).

E. Metabolic Diseases: Familial Persistent
Hyperinsulinemic Hypoglycemia of Infancy and
Sulfonylurea Receptor 1

Various types of ion channels are involved in the reg-
ulation of electrical activity in the pancreatic b-cell. Of
these, the ATP-sensitive K1 (KATP) channel plays a crit-
ical role in directly linking cellular metabolism to the
electrical activity. Opening the ATP-sensitive K1 chan-
nels leads to membrane hyperpolarization and conse-
quently suppression of insulin secretion. Recent genetic
analysis has revealed mutations in the ATP-sensitive
K1 channel subunits that may contribute to inappropri-
ate and excessive secretion of insulin.

PHHI is an autosomal recessive disorder character-
ized by increased irregularity in insulin secretion lead-
ing to hypoglycemia, coma, and severe brain damage in
children. Both sporadic and familial variants of PHHI
are recognized; familial forms are common in communi-
ties with high rates of consanguinity where the inci-
dence may be as high as 1 in 2500 live births and is
the most common cause of hypoglycemia in newborns
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(Aynsley-Green and Hawdon, 1997). Recent genetic link-
age analysis has identified mutations in the KATP chan-
nel complex that regulates insulin secretion from pan-
creatic b-cells. The KATP channels predominantly
determine the resting potential of b-cell and couple cel-
lular metabolism to electrical activity (Ashcroft and
Rorsman, 1989; Dukes and Philipson, 1996). When
plasma glucose is elevated, increases in intracellular
ATP/ADP ratio lead to closure of KATP channels and
membrane depolarization that, in turn, lead to the acti-
vation of voltage-dependent Ca21 channel, rise in intra-
cellular Ca21, and insulin secretion.

The b-cell KATP channel, like other KATP channels
described in neurons, cardiac, smooth, and skeletal mus-
cle, are inhibited by intracellular ATP, and recent mo-
lecular cloning has shown that the channel is an octamer
composed of four subunits of the sulfonylurea receptor
SUR1 coupled to four subunits of the inward rectifier
Kir6.2 (Inagaki et al., 1995a, 1997; Clement et al., 1997;
Shyng and Nichols, 1997). Over 28 naturally occurring
mutations in SUR1 (Thomas et al., 1995b; Dunne et al.,
1997; Verkarre et al., 1998) and two different mutations
in Kir6.2 subunits have been identified in families with
PHHI (Thomas et al., 1996a; Nestorowicz et al., 1997;
Meissner et al., 1999). No KATP channel activity was
observed in b-cells isolated from a homozygous patient
or after coexpression of recombinant Kir6.2 and mutant
SUR1 (V187D) (Otonkoski et al., 1999). Detailed func-
tional analysis in COS cells by cotransfection of Kir6.2
with various single mutations of SUR1 identified in the
PHHI family suggested this lack of KATP channel activ-
ity or reduction of KATP channel sensitivity to MgADP
(Shyng et al., 1998). In fact, patients with mutations in
SUR1 either failed to respond to diazoxide or showed
diminished sensitivity to treatment (Thornton et al.,
1998).

The role of KATP channels in b-cell function has been
evaluated in transgenic mice carrying a dominant-neg-
ative form of Kir6.2 (G132S) generated by substituting
the glycine lining the pore with serine (Miki et al., 1997).
These mice develop hypoglycemia with hyperinsulin-
emia in neonates and hyperglycemia with hypoinsuline-
mia and decreased b-cell population in adults. KATP
channel function was found to be impaired in the b-cell
of transgenic mice with hyperglycemia. These results
imply that the KATP channel complex might play a sig-
nificant role in b-cell survival and regulation in insulin
secretion, suggesting that modulation of Kir6.2 may of-
fer additional opportunities in treatment of diabetes and
related conditions of abnormal glucose regulation. More
recently, it has been shown that the SUR1 knockout
mice, unlike the Kir6.2 counterpart, are not insulin-
hypersensitive, although their b-cells lacks KATP chan-
nels and show spontaneous Ca21 transients similar to
those seen in PHHI patients. SUR1 knockout mice were
normoglycemic until stressed, unlike in PHHI patients
whose glucose levels are persistently low suggestive of a

role for KATP-independent pathways that regulate insu-
lin secretion, at least in mice (Seghers et al., 2000).

III. Disease- and Drug-Induced Regulation of K1

Channels

A. Cardiac Failure and Hypertrophy

K1 channels are targets for the actions of transmit-
ters, hormones, or drugs that modulate cardiac func-
tions. Changes in the densities and/or properties of these
K1 channels that occur during the normal development
or as a result of damage or disease can have profound
physiological consequences (Matsubara et al., 1993; Xu
et al., 1996; Yao et al., 1999). Cardiac failure, a patho-
physiologic condition with numerous etiologies includ-
ing myocardial infarction, hypertension, and myocardi-
tis (Wilson, 1997) is characterized by action potential
prolongation and, accordingly, altered expression of a
variety of depolarizing and hyperpolarizing membrane
currents. In an attempt to compensate for the reduction
in cardiac function in cardiac failure, the sympathetic
nervous system, the renin-angiotensin-aldosterone sys-
tems, and other neurohumoral mechanisms are acti-
vated. Adaptive changes at the level of the cardiac myo-
cyte include cellular hypertrophy and altered gene
expression. Electrical remodeling in cardiac myocytes
leading to action potential prolongation is a common
finding in human heart failure and in animal models of
cardiac hypertrophy. Changes in a wide range of plasma
membrane receptors and intracellular signals such as
increased intracellular calcium, cAMP, inositol phos-
phates, and diacylglycerol concentrations are associated
with cardiac hypertrophy and failure (Morgan and
Baker, 1991; Gopalakrishnan and Triggle, 1990; Wick-
enden et al., 1998).

A reduction in the current density of the transient
outward current (ITO) is the most consistent ionic cur-
rent change in cardiac hypertrophy and failure
(Nabauer and Kaab, 1998; Wickenden et al., 1998; Pinto
and Boyden, 1999; Tomaselli and Marban, 1999). This
outward repolarizing K1 current activates and inacti-
vates rapidly with an inactivation constant of ;60 ms
(Dixon et al., 1996; Kong et al., 1998). The down-regu-
lation of this current has profound effects on phase 1 and
the level of plateau of the action potential, and it also
alters currents that are subsequently active along the
cardiac action potential. The Kv4.3-containing channel
is thought to underlie the bulk of ITO found in the mam-
malian heart, although Kv1.4 or Kv4.2 channels might
represent another fraction of ITO with distinct kinetics
in different regions of the heart (Dixon et al., 1996; Kong
et al., 1998). By ribonuclease protection assays and
whole-cell electrophysiological recording, Kaab et al.
(1998) found that the level of Kv4.3 mRNA decreased by
30% in human failing hearts compared with nonfailing
controls. This observation correlated with the reduction
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in peak ITO density measured in ventricular myocytes
isolated from adjacent regions of the heart.

It has been known that action potential durations
vary across the myocardial wall and in different regions
of the mammalian heart (Litovsky and Antzelevitch,
1989; Fedida and Giles, 1991; Lukas and Antzelevitch,
1993; Di Diego et al., 1996). The density of ITO also
varies regionally and transmurally in the heart (Wet-
twer et al., 1994; Nabauer et al., 1996). Electrophysio-
logical recording from myocytes isolated from patients
with aortic stenosis and compensated left ventricular
hypertrophy indicates that macroscopic ITO was absent
in superficial subendocardial cells, whereas ITO current
density was not significantly altered in the deeper layers
(Bailly et al., 1997). A region-dependent alteration in the
density of ITO current was also observed in the cate-
cholamine-induced hypertrophy in animals (Bryant et
al., 1999). It is possible that this region-dependent sup-
pression of ITO current might, in part, underlie the re-
gional heterogeneity in action potential prolongation in
cardiac hypertrophy and may predispose to ventricular
arrhythmias, a cause of sudden death in patients with
cardiac failure.

As discussed later, an approach to the treatment of
heart failure would be to normalize K1 channel gene
expression by gene transfer or pharmacologic modula-
tion. Recent studies have shown that thyroid hormone
treatment can increase Kv4.2 or Kv4.3 expression at the
transcriptional level and enhance the recovery rate from
the inactivation of ITO in rat ventricular myocytes (Shi-
moni et al., 1997; Wickenden et al., 1997). Accordingly,
agents with thyroid hormone-like properties might be
useful in the treatment of heart failure.

B. Atrial Fibrillation

Atrial fibrillation, the most common arrhythmia in
man, is characterized by a marked shortening of the
action potential duration, effective refractory period of
atria, and a decreased rate of atrial repolarization re-
sulting in increased dispersion of refractoriness as well
as changes in atrial conduction velocity (Zipes, 1997;
Nattel, 1999). The development of atrial fibrillation can
be triggered by rapidly discharging atrial foci (mainly
from pulmonary veins) or degeneration of atrial flutter
or atrial tachycardia into fibrillation (Chen et al., 1999b;
Scheinman, 2000). Risk factors for atrial fibrillation in-
clude cardiac diseases such as congestive heart failure,
valvular heart disease, and myocardial infarction (Ryder
and Benjamin, 1999).

It has been shown that sustained atrial tachycardia
causes changes in electrophysiological function to pro-
mote the occurrence and maintenance of atrial fibrilla-
tion, a process referred to as atrial electrophysiological
remodeling (Morillo et al., 1995; Wijffels et al., 1995).
Recent studies have revealed that changes in ion chan-
nel functions play important roles in atrial electrophys-
iological remodeling caused by atrial fibrillation. In the

canine atrial fibrillation model induced by chronic atrial
tachycardia (rapid pacing), isolated atrial myocytes
showed significant reductions in L-type Ca21 current
and ITO densities, without changes in Kir2.1, hERG,
KCNQ1-minK, Ca21-dependent Cl2 current, or T-type
Ca21 currents (Yue et al., 1997). Consistent with this
observation, reductions in mRNA levels for Kv4.3, the
a1-subunit of L-type Ca21 channels, and the a-subunit of
cardiac Na1 channels were noted with no changes in
mRNA levels for delayed rectifier K1 channel Kir2.1 or
the Na1/Ca21 exchanger. Western blot analysis further
confirmed a reduction in protein expression of Kv4.3 and
Na1 channels, whereas that of the Na1/Ca21 exchanger
was unchanged (Yue et al., 1999; Li et al., 2000). More
importantly and consistent with data from the canine
atrial fibrillation model, significant reductions in ITO
(encoded by Kv4.3) and ultrarapid delayed rectifier
(IKur) (encoded by Kv1.5) as well as L-type Ca21 current
densities were observed in atrial myocytes isolated from
patients in chronic atrial fibrillation. Furthermore,
quantitative Western blot analysis revealed that the
expression of Kv1.5 protein was reduced by .50% in
both the left and the right atrial appendages of atrial
fibrillation (Van Wagoner et al., 1997, 1999). Although
abnormalities of K1 channels may be fundamentally
implicated in atrial fibrillation, other factors such as
structural changes (Li et al., 1999) or heterogeneous
alterations in atrial sympathetic innervation (Jayachan-
dran et al., 2000) may also play critical roles in other
forms of atrial fibrillation.

C. Drug-Induced Long-QT Syndromes

Drug-induced precipitation of polymorphic ventricu-
lar dysrhythmia, the torsade de pointes, in susceptible
individuals by certain H1 antagonists such as terfena-
dine has now been linked to the prolongation of the QT
interval consequent to inhibition of the IKr channels
encoded by the hERG gene (reviewed in Delpón et al.,
1999; Taglialatela et al., 2000). These drugs have been
shown to block hERG channels in a concentration range
similar to that found in the plasma of subjects showing
proarrhythmic effects. Similar interactions have been
reported for antipsychotics such as sertindole (Rampe et
al., 1998), tricyclic antidepressants, and certain antibi-
otics and anti-emetic agents. Inhibition of another car-
diac delayed rectifier, Kv1.5, by H1 receptor antagonists
such as loratadine (Lacerda et al., 1997) and rupatadine
(Caballero et al., 1999) has also been suggested to con-
tribute to drug-induced cardiac arrhythmias.

D. Apoptosis and Oncogenesis

K1 channel activities play important roles in signal-
ing pathways leading to proliferation, differentiation,
and cell fusion. Increases in K1 channel activity and
enhanced K1 efflux are thought to sustain membrane
hyperpolarization necessary to facilitate Ca21 entry
(Santella, 1998), although additional pathways, such as
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control of cellular volume by K1 channels, might also be
involved in cell proliferation (Rouzaire-Dubois and
Dubois, 1998; Vaur et al., 1998). A number of studies
have suggested membrane hyperpolarization as an es-
sential requirement for cell proliferation. For example,
an increase in expression levels of a Ca21-dependent K1

channel with strong inward rectification was observed
during the G1 phase of HeLa cells, which progressively
declined to a minimum in the S phase and then in-
creased in the M phase (Takahashi et al., 1993). Inhibi-
tion of K1 channels by pharmacological agents has been
found to inhibit cell proliferation in normal human lym-
phocytes (Amigorena et al., 1990; Lin et al., 1993; Rader
et al., 1996; Jensen et al., 1999), human melanoma cells
(Nilius and Wohlrab, 1992; Lepple-Wienhues et al.,
1996), small lung cancer cells (Pancrazio et al., 1993),
breast cancer cells (Woodfork et al., 1995), and prostatic
cells (Skryma et al., 1997). Changes in expression of an
inward rectifying K1 channel and a noninactivating de-
layed rectifier K1 channel are associated with the time
course of membrane fusion of myoblast to form multinu-
cleated skeletal muscle fibers (Shin et al., 1997; Oc-
chiodoro et al., 1998). Recently, a gene encoding the
human EAG K1 channel was cloned from myoblasts,
localized to chromosome 1q32-41 and shown to be re-
sponsible, in part, for changes in membrane hyperpolar-
ization during the myoblast fusion (Occhiodoro et al.,
1998).

1. Apoptosis. Apoptosis, or programmed cell death,
is a fundamental biological process involved in many
physiological and pathological phenomena. This process
is predominantly catabolic in nature where cellular mac-
romolecules are broken down by distinct enzymes to be
later recycled in healthy cells. Activities of enzymes,
nucleases, and caspases that propagate and amplify
death signals are K1-dependent (Bortner et al., 1997;
Hughes and Cidlowski, 1999). Recent studies have
shown that enhancement of K1 current is directly in-
volved in apoptosis (Yu et al., 1997, 1999) and oncogen-
esis (Pardo et al., 1999). In mouse neocortical neurons, a
delayed rectifier and tetraethylammonium (TEA)-sensi-
tive K1 current responsible for neuronal apoptosis was
enhanced by serum deprivation or staurosporine. Inhi-
bition of outward K1 currents with TEA or elevated
extracellular K1, but not with blockers of Ca21, Cl2, or
other K1 channels, reduced apoptosis. Exposure to the
K1 ionophore valinomycin or the KATP channel opener
cromakalim induced apoptosis (Yu et al., 1997). Thus,
enhanced K1 efflux through increase in expression of a
specific TEA-sensitive and delayed rectifier K1 channel
may mediate certain forms of neuronal apoptosis in dis-
ease states. Thymocyte apoptosis induced by dexameth-
asone, etoposide, g-irradiation, or ceramide has also
been shown to be prevented by the K1 channel blocker
tetrapentylammonium (Dallaporta et al., 1999).

In addition to increased expression of K1 currents,
modulation of K1 channel function is one of the mecha-

nisms used to induce programmed cell death by a variety
of extrinsic and intrinsic signals. For example, the inhi-
bition of Kv1.3 current by tyrosine kinase phosphoryla-
tion induced by Fas plays important roles in apoptosis,
which is critical to the development of the immune sys-
tem, and in the elimination of target cells expressing
foreign antigens (Szabo et al., 1996). In Drosophila,
reaper, grim, or hid gene expression triggers apoptosis
in a caspase-dependent manner. The peptides encoded
by these genes share a common feature in that their N
termini are similar to those of the Shaker K1 channel
that block channel and lead to fast inactivation. Muta-
tions that reduce the apoptotic activity of reaper also
reduced the peptide’s ability to induce channel inactiva-
tion. Thus, blocking a Shaker K1 channel by peptides
encoded by reaper, grim, or hid gene was suggested to be
involved in apoptosis (Avdonin et al., 1998).

2. Oncogenesis. Modulation of K1 channels is in-
volved in Ras/Raf signal transduction in oncogenic
transformation (Collin et al., 1990; Yatani et al., 1991;
Huang and Rane, 1994; Decker et al., 1998). Recent
studies have shown a high level of an intermediate con-
ductance Ca21-activated K1 current (IKCa) in Ras-
transformed fibroblasts but not in the untransformed
counterparts (Rane, 1991). High levels of expression of
IKCa have also been observed in rat prostate cancer cell
lines, AT2.1 and MatLyLyu, suggesting hyperactivity of
the Ras/MAPK pathway in prostatic cancer and that
IKCa plays important roles in regulating cell growth
(Rane, 2000). Similarly, the hERG was shown to be
sequentially expressed during neuronal development
and to participate in the regulation of membrane poten-
tial in mammalian neuroblastoma cells (Arcangeli et al.,
1995, 1997). The hERG, and the related ether-a-go-go
K1 channels are expressed in a variety of tumor cell
lines (Bianchi et al., 1998; Pardo et al., 1999), the inhi-
bition of which causes a significant reduction of cell
proliferation. Moreover, the expression of rEAG favors
tumor progression when transfected cells are injected
into immunosuppressed mice, and overexpression of
rEAG K1 channels in Chinese hamster ovary or NIH
3T3 cells induces significant features characteristic of
malignant transformation (Pardo et al., 1999). Taken
together, these studies suggest that these K1 channels
play crucial roles in oncogenesis.

E. Alzheimer’s Disease

Alzheimer’s disease is the most prevalent cause of
progressive declining cognitive function, loss of memory,
and late stage decreasing physical deterioration in the
elderly. It is characterized pathologically by the pres-
ence of intracellular neurofibrillary tangles and extra-
cellular neuritic plaques consisting of deposits of the
b-amyloid (Ab), a 39- to 43-amino acid peptide proteo-
lytically derived from b-amyloid protein precursor (b-
APP). In Alzheimer’s disease, significant neuronal cell
death is found in the temporal and parietal cortex,
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hippocampus, amygdala, and basal forebrain cholinergic
system. Several mechanisms have been linked to pro-
gressive neurodegenerative disorder, such as alterations
in amyloid precursor protein metabolism, cholinergic
transmission, calcium homeostasis, oxidative metabo-
lism, and protein kinase C transduction systems (Matt-
son et al., 1993; Hensley et al., 1994; Ito et al., 1994;
Yankner, 1996; Yu et al., 1998). As discussed below,
dysfunction of K1 channels in both central nervous sys-
tems and peripheral tissues has been reported. It is
plausible, however, that any association of K1 channel
defects with the pathophysiology of Alzheimer’s disease
may be indirect or secondary in nature consequent to
generalized degeneration associated with the disease.

1. b-Amyloid. K1 channel dysfunction in Alzhei-
mer’s disease was initially suggested by radioligand
binding studies using apamin, the bee venom octade-
capeptide that blocks small conductance Ca21-activated
K1 channels responsible for afterhyperpolarization of
neurons (Ikeda et al., 1991). In hippocampus, a reduc-
tion of 125I-apamin binding sites in the subiculum and
CA1 regions was found in patients with Alzheimer’s
disease. The reduction of 125I-apamin binding sites in
the subiculum correlated with cell density but not neu-
ritic plaque density, indicating discrete loss of small
conductance of Ca21-activated K1 channels within the
hippocampal formation. In hippocampal neurons from
neonatal rats, Ab was shown to inhibit voltage-depen-
dent fast-inactivating K1 currents (Good et al., 1996).
This inhibition results in abnormally large increases in
intracellular Ca21 levels upon depolarization of the neu-
ron leading to neurotoxicity (Good and Murphy, 1996).

Other evidence linking Ab-induced abnormal K1 to
the neuronal cell death was revealed by in vitro studies
using a cholinergic septal cell line, SN56 (Colom et al.,
1998). These cells exhibited a tetraethylammonium-sen-
sitive outward K1 current with delayed rectifier charac-
teristics. Addition of Ab increased K1 current density
some 44 to 66% and decreased cell viability by 25 to 39%.
TEA (10 to 20 mM) or K1 depolarization inhibited out-
ward currents, widened action potentials, elevated
[Ca21]i, and inhibited more than 68% of the Ab-induced
toxicity. These data suggest that a K1 channel with
delayed rectifier characteristics may play an important
role in Ab-mediated toxicity in this septal cholinergic
cell line (Colom et al., 1998).

In peripheral tissues, K1 channel dysfunction was
initially identified in fibroblasts from patients with Alz-
heimer’s disease where a 113-pS TEA-sensitive K1

channel was absent compared with normal human fibro-
blasts (Etcheberrigaray et al., 1993). This defect was
mimicked in normal fibroblasts by the addition of
b-amyloid protein (Etcheberrigaray et al., 1994). TEA
depolarized and elevated intracellular Ca21 levels in
young and aged control fibroblasts but not in fibroblasts
from Alzheimer’s disease patients, supporting the dys-
function of TEA-sensitive K1 channels in the disease.

Rb1 flux through apamin and charybdotoxin-sensitive
Ca21-activated K1 channels was selectively impaired in
fresh, noncultured platelets from patients with Alzhei-
mer’s-type dementia, although the a-dendrotoxin-sensi-
tive voltage-dependent K1 channel was not affected
compared with nondemented controls (de Silva et al.,
1998). b-Amyloid protein also enhanced phytohemagglu-
tinin-induced Ca21 rise in T-lymphocytes, consistent
with the hypothesis that enhanced calcium responses
serve as a general feature of b-amyloid neurotoxicity
(Eckert et al., 1993). However, patch-clamp analysis in-
dicated that T-lymphocyte K1 channels are not function-
ally deficient in Alzheimer’s disease, and that b-amyloid
protein does not mediate an alteration of their currents
(Cohen et al., 1996), suggesting Ab might induce toxicity
through alternative pathways.

2. b-Amyloid Protein Precursor. b-APP, the source
of the fibrillogenic Ab, is a membrane-spanning and
multifunctional protein that is widely expressed in the
nervous system. b-APP is axonally transported and ac-
cumulates in presynaptic terminals and growth cones. A
secreted form of b-APP (sAPP) is released from neurons
in response to electrical activity and plays important
roles in learning, memory, and cell survival (Roch et al.,
1994; Mattson, 1997; Meziane et al., 1998; Dodart et al.,
2000). In addition to Ab-induced neurotoxicity via po-
tential modulation of K1 channel function, a study re-
vealed that sAPP can suppress action potential and hy-
perpolarize hippocampal neurons by activating large
conductance Ca21-activated K1 channels leading to sup-
pression of intracellular Ca21 concentration (Furukawa
et al., 1996). These results suggest that the effects of
b-APP on synaptogenesis and synaptic plasticity might,
in part, mediate through activation of Ca21-activated
K1 channels and that the abnormalities in b-APP pro-
cessing or sAPP might contribute to the neurodegenera-
tive process in Alzheimer’s disease.

3. Presenilins. The presenilins are proteins that con-
tain multiple transmembrane domains and localize pri-
marily to the endoplasmic reticulum and Golgi appara-
tus. Although the precise functions of presenilins are not
totally understood, presenilins are involved in the pro-
teolytic processing of b-amyloid precursor proteins and
play important roles in the notch signaling during em-
bryonic development and/or cellular differentiation
(Kim and Tanzi, 1997; Chan and Jan 1999; Haass and
De Strooper, 1999; Czech et al., 2000). Genetic linkage
analysis showed that mutations in presenilin 1 (PS-1,
mapped on chromosome 14) and presenilin 2 genes (PS-2
on chromosome 1) yielding abnormal release of amyloi-
dogenic peptide from amyloid precursor protein have
been linked to the autosomal dominant early onset of
familial Alzheimer’s disease (Clark et al., 1995; Rogaev
et al., 1995; Schellenberg, 1995; Sherrington et al.,
1995). Based on the multiple membrane-spanning topol-
ogy, it was proposed that presenilins might function as,
or as part of, a channel, transporter, or pore (Li and
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Greenwald, 1996). Using in vitro expression in HEK-293
cells, a recent study has revealed that expression of
wild-type PS-1 or PS-2 increases outward K1 current
densities. In HEK-293 cells transiently transfected with
PS-1 (S290C) or PS-1 (G209V), two missense mutations
associated with early onset Alzheimer’s disease, mean
outward K1 current densities are also shown to be in-
creased in HEK-293 cells expressing the S290C mutant
but not with the G209V mutant. Expression of wild-type
PS-1 in neonatal rat ventricular myocytes also results in
increased outward K1 currents, whereas no detectable
effects on membrane currents were seen in COS-7 cells
transfected with PS-1. These results suggest that the
presenilins do not actually form K1 channels, but rather
that these proteins up-regulate functional K1 channel
expression (Malin et al., 1998). Thus, presenilins could
regulate neuronal K1 channel expression, and muta-
tions in PS-1 or PS-2 can, in part, result in profound
changes in neuronal excitability, which may contribute
to the cognitive decline commonly associated with Alz-
heimer’s disease to some extent.

F. Neuromuscular Disorders

Mutations in a variety of ion channels, including Na1,
Ca21, and Cl2 channels, have been found to underlie
various forms of human neuromuscular disorders. The
defects of ion channels lead to the aberrant excitability
of muscle fibers that gives rise to periodic paralysis or
myotonia (for reviews see Cannon, 1996; Engel et al.,
1998). In addition to inherited genetic diseases, diverse
neuromuscular disorders are attributed to antibody-me-
diated autoimmunity where the extracellular domains of
receptors or ion channels are the primary targets of
autoantibodies. For example, myasthenia gravis is
caused by autoantibodies to nicotinic acetylcholine re-
ceptors at the neuromuscular junction, which cause
weakness of the skeletal muscle (Richman and Agius,
1994). The autoantibodies that interfere with neuro-
transmitter release by binding to presynaptic voltage-
dependent Ca21 channels underlie the Lambert-Eaton
myasthenic syndrome, which is often found in patients
with small cell lung cancer (Kim and Neher, 1988; Pe-
lucchi et al., 1993). In acquired neuromyotonia (Isaacs’
syndrome), where hyperexcitability of peripheral motor
nerves leads to muscle twitching during rest, cramps
during muscle contraction, impaired muscle relaxation,
and muscle weakness, autobodies directed against
4-aminopyridine or a-dendrotoxin-sensitive K1 chan-
nels in motor and sensory neurons were detected (Shil-
lito et al., 1995; Hart et al., 1997). These antibodies
mainly suppress voltage-gated K1 channels (Kv1.1 and
Kv1.6) with no change in gating kinetics and lead to
peripheral nerve hyperexcitability (Nagado et al., 1999).
In humans with hypokalemic periodic paralysis caused
by mutations of the 1,4-dihydropyridine receptor of the
voltage-gated calcium channel, diminished skeletal

muscle KATP channel activity has also been reported
(Tricarico et al., 1999).

IV. Pharmacological Considerations

As discussed in the preceding sections, several genet-
ically linked and acquired diseases involve alterations in
the function of K1 channels. Genetic linkage studies
have been pivotal in elucidating the role of many K1

channels in pathophysiologic and physiologic conditions.
More importantly, these findings provide a basis to de-
velop appropriate therapy for various diseases. Continu-
ing pharmaceutical interest revolves around the discov-
ery and development of selective organic modulators of
various classes of K1 channels (Colatsky, 1998; Curran,
1998; Kaczorowski and Garcia, 1999). Enthusiasm in
the K1 channel arena is driven by the realization that
class III antiarrhythmic agents and antidiabetic sulfo-
nylureas act as antagonists at specific K1 channel
classes and that a variety of K1 channel inhibitors and
openers offer significant therapeutic opportunities in
areas ranging from cardiac, vascular, and nonvascular
muscle, neuronal, immune, and secretory systems to
modulation of hair follicle growth (Table 3). Gene deliv-
ery and selective targeting of channel proteins by anti-
sense oligonucleotides represent emerging approaches.
With advances in molecular biology and antisense tech-
nology, therapeutics based on gene delivery, with precise
control of the level and distribution of ion channel ex-
pression into mammalian neuronal, cardiac, hair cells,
and other cell types, are currently being investigated
(Holt et al., 1999; Johns et al., 1999; Hoppe et al., 2000).

However, key hurdles in targeting K1 channels re-
main to be resolved. Given the diversity of K1 channel
subunits and the potential to vary the constituents to
form heteromeric channel complexes to alter expression,
cellular targeting, and biophysical and pharmacological
properties in native cell types, it is difficult to know the
precise composition of channel complexes in vivo. The
latter, together with information on tissue-specific local-
ization and the availability of high-throughput in vitro
assays predictive of in vivo drug activity and selectivity,
is seldom available. This is an important issue, which
has not been addressed to the full extent, as efforts are
launched to design openers and/or blockers of various
classes of potassium channel modulators. Nevertheless,
over the past decade or so, intense medicinal chemistry
efforts have focused on the synthesis and development of
modulators of various voltage-gated K1 channels, calci-
um-activated K1 channels and ATP-sensitive K1 chan-
nels (Figs. 3 and 4; Tables 3 and 4).

A. Voltage-Gated K1 Channels

1. Kv1.3 Channels. The Kv1.3 channels, members of
the voltage-gated K1 channel family expressed predomi-
nantly in human lymphocytes, have been widely ex-
ploited as pharmacological targets for immunosuppressive
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therapy. Selective blockers of these channels depolarize
membrane to attenuate calcium influx and inhibition of T
cell activation in vitro and immunosuppression in vivo
(Cahalan and Chandy, 1997). Many peptides isolated from
scorpion venoms and sea anemone potently block Kv1.3
channels and inhibit T-lymphocyte activation. Inhibition of
these channels by margatoxin was initially shown to pre-
vent T cell activation and attenuate immune responses in
vivo (Koo et al., 1997). Several nonpeptide analogs, such as
dihydroquinolines, WIN 17317-3 (Hill et al., 1995) and
CP-339,818 (Nguyen et al., 1996), piperidines, UK 78,282,
(Hanson et al., 1999), and certain alkoxypsoralenes (Wulff
et al., 1998) have been shown to block Kv1.3 channels
and/or inhibit human T cell activation in vitro. Despite this
in vitro evidence, there has been little in vivo demonstra-
tion until recently that blockade of Kv1.3 will attenuate
immune responses, the latter possibly due to species dif-
ferences, since in many rodent peripheral T cells these
channels do not appear to set membrane potential. How-
ever, these channels appear to be present on peripheral T
cells of minipigs, and Koo et al. (1999) have shown that the
nortriterpene, correolide, and its analogs extracted from
the tree Spachea correae can block Kv1.3 channels and
inhibit delayed-type hypersensitivity response to tubercu-
lin in minipigs (Koo et al., 1999). The Kv1.3 modulators
described thus far could serve as tools for the further
design of immunosuppressive agents because many of
these compounds lack desirable potencies, selectivity, and
pharmacokinetic profile. For example, a study with radio-
labeled WIN 17317-3 has shown that this compound is also
a potent blocker of brain type IIa sodium channels (Wan-
ner et al., 1999).

2. Cardiac Delayed Rectifier K1 Channels. The goal
of developing a class III antiarrhythmic agent effective
against ventricular arrhythmias while reducing hemo-
dynamic liabilities remains to be realized, but should
now be accelerated with the understanding of the mo-
lecular components of cardiac delayed rectifiers, i.e., IKs
(KvLQT1-minK), IKr (hERG), and IKur (Kv1.5) chan-
nels. The currently available class III drugs amiodarone
(Kodama et al., 1999) and sotalol (Anderson and Prys-
towsky, 1999) possess properties beyond the realm of a
pure class III effect (Roden, 1993; Nair and Grant, 1997;
Sager, 1999).

Novel antiarrhythmic drugs belonging to the class III
type have now become available that block a specific
ionic current (e.g., dofetilide that blocks IKr) or block
multiple ionic channels (e.g., ibutilide and azimilide) to
prolong atrial and ventricular action potentials without
unwanted pharmacological effects. Since IKr blockers
increase action potential duration and refractoriness
both in atria and ventricle without affecting conduction
per se, theoretically they represent potentially useful
agents for the treatment of arrhythmias, although they
may have an enhanced risk of proarrhythmia at slow
heart rates (Table 4).

As noted previously, cardiac tissues express rapidly
activating delayed rectifier currents, designated IKur, in
contrast to the classical IKr and IKs channels. The
Kv1.5 subunit is the major component of the cardiac
ultrarapid delayed rectifier in human atria as revealed
by localization (Mays et al., 1995) and antisense oligo-
nucleotide studies in cultured adult human atrial
myocytes (Feng et al., 1997). Association with Kvb1.2

TABLE 3
Potassium channel openers

Channel Family Therapeutic Indication(s) Compounds

KCNQ2/KCNQ3 Epilepsy Retigabine (also GABAA agonist)
BKCa Cerebral ischemia BMS-204352

NS 004 (also inhibits other K1 channels)
Coronary disorders NS 1608, NS1619 (also Ca21 channel inhibitor)
Antipsychotic
Urinary incontinence NS8
Pollakisuria

KATP Hypertension, Pinacidil
ischemic heart
disease,

Diazoxide

heart failure, Nicorandil
Asthma Aprikalim (RP 52891)

Bimakalim (EMD52692)
Celikalim
Cromakalim
Emakalim
NIP121
RO 316930
RWJ 29009
SDZ PCO 400
Rimakalim (HOE234)
Symakalim (EMD 57283)
YM-099, YM-934

Myocardial ischemia BMS180448
U 89232 (BMS 189365)
(Mito KATP?)

Alopecia P1075, minoxidil
Urinary incontinence ZM244085, ZD6169, WAY133537, WAY151616, ZD0947
Erectile dysfunction PNU83757
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FIG. 3. K1 channel blockers. Shown are blockers of voltage-gated, calcium-activated, and ATP-sensitive K1 channels.
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subunits can also alter functional properties of Kv1.5
channels (Majumder et al., 1995). Selective blockers of
Kv1.5 channels could be potentially beneficial for the
treatment of cardiac arrhythmias because such agents

could retard repolarization and prolong refractoriness
selectively in cardiac myocytes (Nattel et al., 1999).

Gene transfer of delayed rectifier K1 channels repre-
sents an emerging strategy for the control of arrhythmias

FIG. 4. K1 channel openers. Shown are openers of voltage-gated, calcium-activated, and ATP-sensitive K1 channels.

TABLE 4
Potassium channel blockers

Channel Family Therapeutic Indication(s) Compounds

Kv1.3 Immunosuppressant CP308408, UK 78,282
Kv1.5 Atrial fibrillation
Kv (other) Multiple sclerosis (axonal regeneration) Fampridine (4-aminopyridine)

Epilepsy, ischemia BIIA 0388
hERG/IKr Atrial fibrillation/flutter Dofetilide (Tikosyn)

Arrhythmia Ibutilide (Corvert injection) (also increases Na1 current)
Almokalant
E4031
MK 499
Sematilide
D-Sotalol

KvLQT1-minK/IKS Arrhythmia Chromanol 293B
HMR1556
E-047/1
L768673

IKr and IKs Arrhythmia, angina Ambasilide (LU 47710)
Azimilide (NE 10064) (also L-type CaCh blocker)
Tedisamil (also Na1 channel blocker)

ITO Arrhythmia Clofilium
KCNQ3/KCNQ4 Alzheimer’s disease DMP543
KATP Ventricular arrhythmia, heart failure, cardiac arrest HMR 1098, HMR 1883

Type II diabetes Tolbutamide
Chlorpropamide
Glibenclamide
Glipizide
Nategliniide
Repagliniide
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triggered by altered cardiac repolarization. Myocytes iso-
lated from adult rabbit ventricular myocytes in culture
which demonstrate longer action potentials and frequent
early-after depolarizations when maintained in culture,
were reversed following adenoviral gene transfer of the
hERG gene (Nuss et al., 1999). Infection with a recombi-
nant adenovirus containing the hERG gene selectively en-
hanced the E-4031-sensitive currents without affecting the
density of transient outward currents, suppressed early-
after depolarizations, and lengthened the refractory pe-
riod. Action potentials from failing dog hearts were also
reversed after exposure to an adenovirus that overex-
presses Shaker K1 channels (Nuss et al., 1996). Further
refinement of techniques to effectively control the level and
to ensure homogenous distribution of transgene expression
at the target organ is likely to be forthcoming (Hoppe et al.,
2000).

As noted previously, it has also become increasingly
important to avoid interactions of many noncardiovas-
cular medicinal products with cardiac ion channels (re-
viewed in Pourrias et al., 1999). Certain H1 antagonists,
such as astemizole and terfenadine, and the prokinetic
agent cisapride are capable of prolonging the QT inter-
val and inducing torsade de pointes in susceptible indi-
viduals through inhibition of IKr channels encoded by
hERG gene. Similar interactions have also been re-
ported for certain antipsychotics such as sertindole
(Rampe et al., 1998), tricyclic antidepressants, and some
antibiotics. Inhibition of Kv1.5 channels by H1 receptor
antagonists such as loratadine (Lacerda et al., 1997) and
rupatadine, a dual antagonist of H1, and platelet-acti-
vating factor receptors (Caballero et al., 1999) has also
been suggested to contribute to drug-induced cardiac
arrhythmias. Prolongation of cardiac repolarization re-
ported with the 5HT3 receptor antagonist, ondanestron,
has been attributed to inhibition, albeit only 30%, of
hERG channels (Kuryshev et al., 2000a). Needless to
note, these pharmacologic misfortunes underscore the
importance of evaluation of potential inhibition of these
cardiac channels during the early developmental phase
of novel compounds because drugs with minimal or no
potential to block hERG or Kv1.5 channels are likely to
possess cardiac safety advantages.

3. KCNQ2/KCNQ3 Channels. Unlike KCNQ1,
KCNQ2 and KCNQ3 are present exclusively in the ner-
vous system and coassemble to form heteromultimers that
underlie the M-current (Wang et al., 1998) critical to neu-
ronal excitability in the nervous system (Brown, 1988).
The potential for targeting the KCNQ2/KCNQ3 combina-
tion as a drug target is underscored by the findings that
compounds such as linopirdine [DuP 996, 3,3-bis(4-pyridi-
nylmethyl)-1-phenylindolin-2-one] and XE991 developed
as cognition enhancers are blockers of cloned KCNQ chan-
nels (Lamas et al., 1997; Eid and Rose, 1999). Linopirdine,
a putative cognition enhancing drug, increases acetylcho-
line release in rat brain tissue and improves performance
in animal models of learning and memory (Schnee and

Brown, 1998). Although clinical data with linopirdine were
largely inconclusive, analogs such as XE991 and DMP543
with superior pharmacological and pharmacodynamic
properties have entered development as orally active ace-
tylcholine-releasing agents with potential in Alzheimer’s
disease (Zaczek et al., 1998). The KCNQ1/minK complex
was 14- to 18-fold less sensitive to XE991 blockade com-
pared with either KCNQ1 alone or neuronal KCNQ2/
KCNQ3 combination, revealing a much desired degree of
selectivity for this compound for neurotransmitter release
over cardiac function (Wang et al., 2000). More recently,
retigabine (D-23129), reportedly in phase II clinical studies
for the treatment of epilepsy, has been shown to activate
KCNQ2/KCNQ3 channels expressed in Chinese hamster
ovary cells in a partially linopirdine-sensitive manner, sug-
gesting that M-channel activation may be a novel mode of
action for anticonvulsant drugs (Main et al., 2000; Rund-
feldt and Netzer, 2000).

B. Calcium-Activated K1 Channels

The recent molecular cloning of various calcium-acti-
vated K1 channels has renewed enthusiasm for the de-
velopment of modulators for these channels. These chan-
nels, critically dependent on intracellular calcium for
channel opening, were initially differentiated largely on
the basis of biophysical (conductance, voltage depen-
dence) and differential toxin sensitivity into large, inter-
mediate, and small conductance Ca21-activated K1

channels. Distinct genes are now known to encode the
three subfamilies of calcium-activated K1 channels, i.e.,
large conductance (BKCa) (a-subunit and its splice vari-
ants), small conductance (Sk1, Sk2, and Sk3), and inter-
mediate conductance channels (reviewed in Vergara et
al., 1998; Castle, 1999; Wallner et al., 1999b). The search
for organic modulators of various Ca21-activated K1

channels with the potential to be developed as therapeu-
tic agents has been actively explored by functional
screening using many of the recombinant channels (Kac-
zorowski and Garcia, 1999).

1. Large Conductance Channels. The BKCa a-subunit
cloned from either Drosophila (Slo) or mammalian (mSlo,
hSlo), in combination with different b-subunits, b1, and
more recently b2 to b4, now extends diversity of BKCa
channels. Initial modulators reported include activators
such as glycosylated triterpenes (dehydrosoyasaponin-I)
and several indole diterpene blockers, such as paxilline,
verruculogen, penitrem A, and aflatrem (Kaczorowski et
al., 1996). Activators of BKCa channels include the ben-
zimidazolones, such as NS-1619 and NS-004. However,
these compounds are, in general, not very potent or highly
selective. More recently, openers of BKCa channels have
been developed as neuroprotective agents. One such com-
pound, BMS-204352, is in advanced trials as a stroke neu-
roprotectant (Hewawasam et al., 2000). NS-8, a pyrrole
derivative shown to activate BKCa channels, is under in-
vestigation for the treatment of urinary incontinence
(Tanaka et al., 1998). The potential for BKCa modulators in
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the treatment of erectile dysfunction has been underscored
by recent studies with the BKCa channel a-subunit (Christ
et al., 1998). Intracavernous injection of hSlo DNA was
capable of altering nerve-stimulated penile erection and
was associated with a significant elevation in intracavern-
ous pressure at least until two months postinjection. Inter-
estingly, the expression of the hSlo message was highest in
the corpus cavernosum tissue and minimal in other tissues
examined, raising the possibility that such localized deliv-
ery of K1 channel genes may provide another avenue for
achieving end organ selectivity.

2. Intermediate Conductance Channels. Blockers of
the IKCa channel have long been proposed for therapy in
sickle cell anemia, diarrhea, and rheumatoid arthritis;
clotrimazole, an inhibitor of the IKCa channel in red
blood cells, has been used for this purpose (Brugnara et
al., 1995; de Franceschi et al., 1996). However, the inhi-
bition of cytochrome P450 enzyme by clotrimazole limits
its therapeutic applications. Recently, a more selective
and potent inhibitor of IKCa channel, TRAM-34 (1-[(2-
chlorophenyl)diphenylmethyl]-1H-pyrazole), with no ef-
fect on cytochrome P450 activity, has been reported (Fig.
3) (Wulff et al., 2000). Although not highly specific,
1-ethyl-2-benzimidazolinone (1-EBIO) and the clinically
used benzoxazoles, chlorzoxazone and zoxazolamine, are
described as pharmacological activators of the IKCa
channel (Syme et al., 2000). Inhibitors of IKCa may also
be useful as immunosuppressive agents because these
channels are up-regulated following antigenic or mito-
genic stimulation (Khanna et al., 1999). IKCa channels
may also serve as an effector for mitogenic Ras/MAPK
signaling in fibroblasts and other cell types, including
prostate cancer cells (Rane, 2000). Openers of IKCa
channels may be therapeutically beneficial in cystic fi-
brosis and peripheral vascular disease, as well (Ed-
wards, 1998).

3. Small Conductance Channels. The SKCa channel,
first identified in cultured rat skeletal muscle, was
shown to be the receptor inhibited by the bee venom
peptide apamin (Blatz and Magleby, 1986). Activation of
apamin-sensitive SKCa channels underlies a component
of the after hyperpolarization current in neurons that
parallels the rise and fall of intracellular calcium levels
(Sah and Clements, 1999). Besides apamin, other block-
ers of SKCa channels, albeit less selective, include tubo-
curarine and dequalinium. Many dequalinium analogs
with varying potencies and selectivities for blocking
IKCa and SKCa channels have been described (Malik-
Hall et al., 2000). For example, the bisaminoquinolium
cyclophane UCL 1684 is about 5000-fold more selective
in inhibiting SKCa channels compared with IKCa-type
channels. Recently, conditional overexpression of a
small conductance K1 channel, Sk3, induced abnormal
breathing patterns during hypoxia and compromised
parturition in mice by changes in uterine smooth muscle
function (Bond et al., 2000). The availability of selective
SKCa modulators will permit evaluation of their poten-

tial role in epilepsy, sleep apnea, neurodegenerative,
and smooth muscle disorders.

C. ATP-Sensitive K1 Channels

KATP channels, a family of weak inward rectifiers
inhibited by intracellular ATP that couple cellular en-
ergy metabolism to membrane electrical activity, have
perhaps been the most widely explored K1 channels in
terms of therapeutic potential (Noma, 1983; Ashcroft
and Ashcroft, 1990; Gopalakrishnan et al., 1993). First
generation K1 channel openers (KCOs), including cro-
makalim and pinacidil, have been known to activate
glyburide-sensitive KATP channels in a variety of vascu-
lar and nonvascular tissues (Edwards and Weston,
1993). A variety of structurally diverse KCOs, including
benzopyran (cromakalim), cyanoguanidines (pinacidil),
and nitroethylene analogs, have been evaluated as po-
tential antihypertensive agents during the past 15
years, although only nicorandil, and to a lesser extent
diazoxide, have been used in cardiovascular medicine, in
part due to the availability of other classes of agents for
these indications.

The recent cloning and expression of KATP channel
components has provided insight into the observed het-
erogeneity in the pharmacologic profile of KCOs (re-
viewed in Aguilar-Bryan et al., 1998). As noted previ-
ously, the KATP channel expressed in pancreatic b-cells
is a multimeric complex composed of Kir6.2 and the
sulfonylurea receptor SUR1 (Clement et al., 1997;
Lorenz et al., 1998). From expression studies using rat
or mouse SUR subunits, it is thought that the molecular
composition of the cardiac/skeletal muscle channel is
SUR2A/Kir6.2, whereas SUR2B is thought to be one of
the subunits constituting the smooth muscle type KATP
channels. More recently, SUR2 splice variants that lack
either exon 14 or exon 17 have been identified by RNA
analysis (Chutkow et al., 1999; Davis-Taber et al., 2000).
With the emerging diversity of KATP channel combina-
tions, it could be anticipated that tissues may contain a
predominance of certain isoforms involved in various
functions ranging from transmitter release to ischemic
protection and may be selectively targeted for develop-
ment of tissue-selective compounds for the treatment of
several cardiac and smooth muscle disorders.

Recent efforts have focused on the development of sec-
ond generation openers of KATP channels for nonvascular
indications including bladder overactivity, irritative bowel
syndrome, airway hyper-reactivity, erectile dysfunction,
and as cardioprotective agents for the ischemic myocar-
dium (Morley, 1994; Garlid et al., 1997). Compounds in-
vestigated for the treatment of bladder overactivity such
as ZM-244085, ZD-6169, or WAY-133537 have been
shown to activate KATP channels, relax bladder smooth
muscle, and exhibit modest in vivo selectivity (Howe et al.,
1995; Wojdan et al., 1999; Gopalakrishnan et al., 1999).
Analogs derived from the benzopyran nucleus, including
BMS-180448 and BMS-191095, display selectivity for
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cardioprotective over vasorelaxant effects relative to the
nonselective KCO, cromakalim. BMS-180448 has been
shown to have cardioprotective effects at concentrations
that do not affect action potential shortening, indicative of
activation of a KATP channel other than the plasma mem-
brane KATP channel. The cardioprotective effects of the
antianginal drug nicorandil have been shown to be via
activation of mitochondrial KATP channels (Sato et al.,
2000). Mammalian cells transfected with KATP channel
subunits Kir6.2 and SUR1 showed resistance to hypoxia
reoxygenation, and a therapeutic approach based on gene
delivery of KATP subunits in tissues vulnerable to hypoxia
reoxygenation and damage has also been suggested (Jo-
vanovic et al., 1998a,b). KCOs examined for airway hyper-
reactivity include SDZ 217–744, with reported improved
selectivity of inhibition of airway hyperactivity relative to
cromakalim (Williams et al., 1990). KATP channel openers
have also been investigated for the potential treatment of
male erectile dysfunction. Pinacidil, cromakalim, and nic-
orandil or its analogs have shown increases in intracaver-
nosal pressure by relaxing corporal smooth muscle, which
leads to initiation and maintenance of erection (Moon et
al., 1999; Vick et al., 2000), providing proof of principle that
such compounds, if delivered directly into the corpus
smooth muscle, could be a viable treatment option. The
basis for the reported modest in vivo selectivity of second
generation KCOs could, in principle, arise from interac-
tions with distinct KATP channel combinations or, more
plausibly, from physiologic or pharmacokinetic factors. For
instance, studies aimed at elucidating the basis for the
cardioprotective effect of KCOs reveal a role for the mito-
chondrial KATP channel, the molecular composition of
which appears to be somewhat distinct from sarcolemmal
KATP channels (Garlid et al., 1997; Szewczyk and Marban,
1999).

Sulfonylureas such as glibenclamide and glipizide
that block KATP channels in pancreatic b-cells have been
used for the treatment of type II diabetes for over 30
years, and newer agents with diminished propensity for
sustained hypoglycemic potential continue to be devel-
oped. More recently, it has been demonstrated that
transfection of SUR1 and Kir6.2 into an insulin-secret-
ing cell line (NES 2Y b-cells) from PHHI patients can
restore glucose-dependent insulin release. This opens up
the potential for gene therapy to alleviate b-cell dysfunc-
tion in PHHI and diabetes (Dunne et al., 1997; Macfar-
lane et al., 2000). Blockers of KATP channels such as
PNU-37883A have also been evaluated as diuretics or as
antiarrhythmic agents (Humphrey and Ludens, 1998).
More recent focus continues in the identification of car-
dioselective KATP channel blockers for the prevention of
ischemia-induced ventricular fibrillation. This has been
underscored by the notion that during acute myocardial
infarction, activation of ATP-sensitive K1 currents re-
sults in action potential duration shortening and eleva-
tion of interstitial [K1] accumulation that may contrib-
ute to reentry arrhythmias and cardiac death (Gögelein

et al., 1998). HMR 1883, a relatively cardioselective
KATP channel blocker with modest selectivity for cardiac
KATP over the pancreatic KATP, prevented ventricular
fibrillation in dogs at doses that did not affect plasma
insulin or blood glucose. Such compounds may prove
useful in the treatment of ventricular arrhythmias with-
out pancreatic side effects or the liabilities of nonselec-
tive blockers under ischemic conditions.

D. Two-Pore K1 Channels

The more recently identified two-pore K1 channels,
including TWIK, TREK, TASK, and TRAAK genes (Ta-
ble 1), thought to function as background channels in-
volved in the modulation of resting membrane potential
in various cell types could emerge as attractive targets
for discovering novel neuroprotective and anesthetic
agents (Lesage and Lazdunski, 1999). The neuroprotec-
tive agent riluzole, currently in use for the treatment of
amyotrophic lateral sclerosis, has been shown to be an
activator of TREK-1 and TRAAK channels (Duprat et
al., 2000). Volatile general anesthetics such as chloro-
form and isoflurane have also been shown to target
TREK-1 channels (Patel et al., 1999). Further knowl-
edge of the localization and regulation of these channels
by cellular and extrinsic signals will be important in
targeting specific two-pore channels for therapeutic in-
tervention.

V. Concluding Remarks

K1 channels are increasingly being elucidated as mo-
lecular targets in a number of pathophysiologic states,
and they continue to trigger considerable enthusiasm as
drug targets. The pivotal role of K1 channels in various
physiological processes including neuronal signaling,
vascular and nonvascular muscle contractility, cardiac
pacing, auditory function, hormone secretion, immune
function, and cell proliferation has been underscored by
the recent flurry of discoveries linking K1 channel mu-
tations to various inherited disorders. Insight into the
structure and function of channel proteins coupled with
the knowledge of genetic and disease-induced regulation
of K1 channels could undoubtedly improve diagnosis
and offer specific candidate genes for the development of
appropriate therapies. On the assumption that defined
K1 channel mutations are linked to specific diseases, it
may be feasible to conduct a molecular diagnosis to
evaluate whether the patient will respond to a drug
aimed at specific K1 channels. It has been shown that
differences in K1 currents may underlie gender-based
drug-induced cardiac arrhythmias; for example, women
are at far greater risk of torsade de pointes following a
variety of drugs including antihistamines, antibiotics,
and antiarrhythmic agents (Makkar et al., 1993). Anal-
ysis of the differential contribution of K1 currents con-
tributing to cardiac repolarization could help improve
screening methodologies for individuals at risk for
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drug-induced arrhythmias and direct development of
drugs with reduced incidence of inducing arrhythmias.
Knowledge of specific mutations may also lead to vali-
dation of more suitable animal models of disease to help
preclinical assessment of novel compounds. In the com-
ing years, modulating K1 channel gene expression in
diseased tissues via various gene delivery approaches or
antisense oligonucleotides could present an additional
avenue to treat various diseases and/or, in combination
with pharmacotherapy, to enhance the selectivity of K1

channel modulators. Additionally, unraveling precise in
situ channel combinations, localization, and channel
regulation in disease pathologies could shed light on
developing better therapeutic strategies. Targeting di-
verse auxiliary subunits or modulating the interactions
of auxiliary subunits with the pore-forming subunit may
also provide alternate avenues for identifying selective
regulators of K1 channel function. It is to be anticipated
that these efforts could collectively enhance the devel-
opment of selective compounds that modulate the vari-
ous classes of K1 channels with promising therapeutic
and prophylactic utility.
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